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We present a general formalism with the aim of describing the situation of an
entity, how it is, how it reacts to experiments, how we can make statistics with
it, and how it `changes’ under the influence of the rest of the universe. Therefore
we base our formalism on the following basic notions: (1) the states of the entity,
which describe the modes of being of the entity, (2) the experiments that can be
performed on the entity, which describe how we act upon and collect knowledge
about the entity, (3) the outcomes of our experiments, which describe how the
entity and the experiments ª areº and ª behaveº together, (4) the probabilities ,
which describe our repeated experiments and the statistics of these repeated
experiments, and (5) the symmetries, which describe the interactions of the entity
with the external world without being experimented upon. Starting from these
basic notions we formulate the necessary derived notions: mixed states, mixed
experiments and events, an eigenclosure structure describing the properties of the
entity, an orthoclosure structure introducing an orthocompleme ntation, outcome
determination, experiment determination, state determination, and atomicity
giving rise to some of the topological separation axioms for the closures. We
define the notion of subentity in a general way and identify the morphisms of
our structure. We study specific examples in detail in the light of this formalism:
a classical deterministic entity and a quantum entity described by the standard
quantum mechanical formalism. We present a possible solution to the problem
of the description of subentities within the standard quantum mechanical
procedure using the tensor product of the Hilbert spaces, by introducing a new
completed quantum mechanics in Hilbert space, were new `pure’ states are
introduced, not represented by rays of the Hilbert space.

1. INTRODUCTION

Several scientists have worked in the past on the elaboration of axiomatic

approaches to quantum mechanics and it would lead us too far to present in
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this paper an overview of all these approaches. It is possible, however, to

indicate two specific lines that have inspired most of the `traditional’ of

these approaches.

1.1. An Axiomatics for Standard Quantum Mechanics

The first line of inspiration was the recovery of standard quantum

mechanics in an axiomatic way. In the standard quantum formalism a state

pcÅ of an entity S is represented by the one-dimensional subspace or the ray
cÅ of a separable complex Hilbert space *. An experiment eH testing an

observable is represented by a self-adjoint operator H on *, and the set of

outcomes of this experiment eH is the spectrum spec(H ) , R . Measurable

subsets A , spec(H ) represent the events (in the sense of probability theory)

of outcomes. The interaction of the experiment eH with the physical entity

being in state pcÅ is described in the following way: (1) the probability for a
specific event A , spec(H ) to occur if the entity is in a specific state pcÅ is

given by ^ c, PA(c) & , where PA is the spectral projection corresponding to A,

c is the unit vector in state cÅ and ^ ? , ? & is the inproduct in the Hilbert space

*; (2) if the outcome is contained in A, the state pcÅ is changed to pdÅ , where

dÅ is the ray generated by PA(c).
This standard quantum mechanical formalism was the inspiration for

most axiomatic approaches. In it, however, the structure of the set of states

and of the experiments is derived from the structure of a complex separable

Hilbert space. The presence of this Hilbert space is ad hoc, in the sense that

there are no physically obvious and plausible reasons why the Hilbert space

structure should be at the origin of both the structure of the state space as
well as the structure of the experiments. This initiated the search for an

axiomatic theory for quantum mechanics where the Hilbert space structure

would be derived from more general and physically more plausible axioms

(Birkhoff and Von Neumann, 1936; Zierler, 1961; Mackey, 1963; Piron, 1964;

Jauch, 1968; Varadarajan, 1968; Beltrametti and Cassinelli, 1981). Due to

the original focus (Birkhoff and Von Neumann, 1936) on the collection of
`experimental propositions’ of a physical entityÐ with the conviction that

such an `experimental proposition’ would be a good basic conceptÐ most

later axiomatics were constructed taking as their basic concept the set + of

experimental propositions concerning an entity S. The first real breakthrough

(Piron, 1964) came with a theorem of Constantin Piron, who proved that if

+ is a complete [Axiom 1], orthocomplemented [Axiom 2], atomic [Axiom
3] lattice, which is weakly modular [Axiom 4] and satisfies the covering law

[Axiom 5], then each irreducible component of the lattice + can be represented

as the lattice of all `biorthogonal’ subspaces of a vector space V over a

division ring K (with some other properties satisfied that we shall not make
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explicit here). Such a vector space is called an `orthomodular space’ and also

sometimes a `generalized Hilbert space.’ It can be shown that an infinite-

dimensional orthomodular space over a division ring which is the real or
complex numbers, or the quaternions, is a Hilbert space. For a long time there

did not even exist any other example of an infinite-dimensional orthomodular

space. The search for a further characterization of the real, complex, or

quaternionic Hilbert space started (Wilbur, 1977). Then Keller constructed a

nonclassical orthomodular space (Keller, 1980), and recently SoleÁ r proved

that any orthomodular space that contains an infinite orthonormal sequence
is a real, complex, or quaternionic Hilbert space (SoleÁ r, 1995; Holland, 1995).

It is under investigation in which way this result of SoleÁ r can be used to

formulate new physically plausible axioms (Pulmannova, 1996; Holland,

1995; Aerts and Van Steirteghem, 1999).

1.2. An Operational Axiomatic Approach

A second line of inspiration could be called `operationality.’ Going along

with the search for `good’ axioms was also the idea of founding the basic

notions for this axiomatics in a physically clear and operational way. `Opera-

tionality’ means that the axioms should be introduced in such a way that
they can be related to `real physical operations’ that can be performed in the

laboratory. We have to say some words about this philosophical preoccupation

with operationality. A first triumph for the `operational method’ was certainly

the well-known analysis of the concept of simultaneity in physics by Albert

Einstein that was also at the origin of the Einsteinian interpretation of relativity

theory. Standard quantum mechanics is an example of a very nonoperational
theory: the basic concept, the wave function, is in principle a mathematical

object with no clear physical interpretation. The three approaches that have

tried to formulate quantum mechanics operationally are the Geneva±Brussels

approach (Jauch, 1968; Piron, 1964, 1976, 1989, 1990; Aerts, 1981, 1982,

1983a, b), the Amherst approach (Foulis and Randall, 1981; Foulis et al.,
1983, Randall and Foulis, 1976, 1978, 1981, 1983), and the Marburg approach
(Ludwig, 1983, 1985). In all three approaches different concepts have been

used as basic notions and different aspects of the possibility of an operational

foundation have been investigated. The approach that we present in this paper

has learned from these three and puts forward a new scheme that takes into

account important results of the earlier approaches, but also gives new insights

that have meanwhile grown out of the theoretical and experimental progress
of the last decades (e.g., nonlocality is an experimental fact now and not a

theoretical hypothesis any longer).

We also want to be explicitly critical of a general attitude that we would

classify as `naive operationalism.’ As `naive realism’ believes that reality is
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just like it appears to us and in this way ignores the problem related to the

way we gather knowledge about this reality, `naive operationalism’ believes

that it is only our laboratory experiments that are `real’ and the rest is a

construction out of the data and structure that we gather from these laboratory

experiments. The extreme weight that naive operationalism puts on the labora-

tory experiments as the only candidates for foundational concepts is somewhat

similar to the positivist and empiricist attitude in philosophy. It is known

that to make experiments we need a theory and that as a consequence there

is no nice hierarchy in the way naive operationalism proposes. We agree

with the naive operationalists that our contact with reality is our experience

and hence our experiments. In this sense it is good to make the effort and

try to introduce as many possible basic concepts that are directly linked to

these experiences and/or experiments. On the other hand we are convinced

of the fact that the overall structure of reality, although it comes to us partially

and in a fragmented way through our immediate experience with it, is revealed

to us much more by the combination of a great many different experiences

and by the way these different experiences form coherent wholes and are

interrelated and also by the way they structure our long-term interaction with

reality. In this sense we are also convinced of the fact that this overall contact

with realityÐ of which our immediate sense experience and hence also our

concrete laboratory experiments are only one aspectÐ reveals to us the global

ontological structure of reality: `the way things are’ and `what is the calculus

of being.’ It is by taking explicitly this fact into account that we will construct

our foundational approach and in this sense we do not want to call it an

`operational’ approach Ð because operationalism is often interpreted as what

we have called naive operationalismÐ but a realistic and operational

approach.

There is another aspect of our approach that we have to point out. As

we have mentioned briefly in Section 1.1, most quantum axiomatics have

been influenced by the original article of Birkhoff and Von Neumann, and

as a consequence have chosen the concept of `operational proposition’ as

their basic concept (called `property’ in the Geneva±Brussels approach). In

the Amherst approach the concept of `operation’ is primary, but here one

also tries to derive `operational propositions’ from this concept. We think

that it is more fruitful to have more basic concepts than just the one of

`experimental proposition’ or `operation.’ Therefore we will found our

approach on five basic concepts and/or structures: states, experiments, out-

comes, probabilities, and symmetries. These basic concepts express the naive

operationalist foundational aspects, the laboratory experiments, but are also

used to derive a `calculus of being,’ structuring the global reality as it is

revealed to us from the overall structure of our experiences with it.
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1.3. A Possible Solution of the Problem of the Description Subentities
in Standard Quantum Mechanics

In standard quantum mechanics a subentity of a big entity is described

within the tensor product procedure of the corresponding Hilbert spaces. As
a consequence of the tensor product procedure there exists pure states (the

so called nonproduct states) of the big entity that are such that if the big

entity is in one of these pure states, the subentity is not in a pure state. This

is a deep problem in standard quantum mechanics that has not been solved

in a satisfactory way. In this paper we present a possible solution to this

problem that comes to the definition of a new `completed’ quantum mechanics
in Hilbert space, where new `pure’ states are introduced that cannot be

represented by rays of the corresponding Hilbert spaces. We show how this

solution follows naturally from the general approach that we have introduced

and how it also is linked with earlier findings. We also want to mention that

for the reader who is only interested in this newly introduced version of a

`completed’ quantum mechanics, but does not want to study the new formal-
ism in detail, that we have written Section 16 in a self-contained way. Such

a reader might immediately proceed to Section 16.

The object of our description is the situation of a physical entity S in its

most general way. The archetypical notions that we consider are the following:

The states: The physical entity S `is’ at each moment in a certain state

p. In our approach the states describe the reality of the entity and the structure

of the set of states expresses the main part of the `calculus of being.’
The experiments: We gather knowledge about the entity by means of

experiments e, f, g, . . . that we can perform on it. The structure of the set

of these experiments expresses the main part of the way we investigate the

reality of the entity.

The outcomes: The structure of the possible outcomes, i.e., the ways

that the entity and the experiments performed on it can `be’ and `behave’
together, is at the root of our formalism.

The probabilities: For many entities these possibilities for certain out-

comes can be structured in a probabilistic theory, probability being the repre-

sentation of the relative frequencies of repeated experiments.

The symmetries: The entity changes also when we do not disturb it by
a measurement and these changes are governed by symmetry principles on

the reality of the entity, expressing its relation with the rest of the world.

These are the basic notions that we want to formalize in our approach.

Derived concepts will be introduced step by step.

As we will see, an entity will be determined by a well-defined set of

relevant states, a well-defined set of relevant experiments, a well-defined set
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of relevant outcomes, and the way in which these experiments interact with

the entity in a state to give rise to an outcome. This entity corresponds to a

physical phenomenon of the real physical world. In this way it is clear that
what we often will classify, in our intuitive classification of phenomena of

the real world, as the same phenomenon may correspond to different entities.

Similarly, one entity may also correspond to different phenomena. In the

traditional philosophical scheme it could be said that entities are `models’

of the phenomenon. However, we do not want to fix this traditional interpreta-

tion a priori, since we believe that a rigorous approach where an entity is
defined by well-defined sets of the basic ontological notions of phenomena

(states, experiments, outcomes, probabilities, and symmetries) may well lead,

also philosophically, to a better `ontological’ classification.

2. BASIC NOTIONS

At a certain moment an entity S is in a certain state p. This state represents

the reality of the entity at that moment. In this way we connect a well-defined

set of states S to the entity S.

Basic Notion 1: States. Let S be an entity; then S is the set of states of

this entity S. At each moment the entity S `is’ in a state p P S , which will

be referred to as the entity’ s `actual’ state. This state p represents the reality
of the entity S at that moment. We shall denote states by symbols p, q, r,
. . . .

We gather our knowledge about the entity S and we act upon the entity

by means of experiments that can be performed on S. A well-defined set of

relevant experiments that are connected to a given entity S is denoted by %
and we will denote experiments by e, f, g, . . . .

Basic Notion 2: Experiments. Let S be an entity with a set of states S .

The set of experiments that we use to gather knowledge about S and to act

on S is denoted by %. If an entity is in a certain state p P S and we perform

an experiment e P %, then an outcome x (e, p) occurs.

Different outcomes can possibly occur for an experiment e on an entity

S in state p. The set of possible outcomes for e if S is in p is characteristic

of the way in which the experiment and the entity interact, and will play a

major role in our formalism. We denote this set of possible outcomes by

O(e, p).

Basic Notion 3: Outcomes. We denote by the nonempty set O(e, p) the

set of possible outcomes for experiment e if S is in the state p. We denote

the set of all nonempty sets of possible outcomes for S being in state p P
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S and performing the experiment e e % by 2 5 {O(e, p) | e P %, p P S }.

The set of possible outcomes of the experiment e will we denoted by O(e)

5 ø p P S O (e, p). The set of possible outcomes for all experiments on the
entity S being in state p will be denoted by O( p) 5 ø e P % O(e, p), and the

set of all possible outcomes is denoted by X 5 ø p P S , e P %O(e, p).

In principle we could consider situations where O (e, p) 5 é , but in

certain sense this would mean that the experiment e in question is not really

applicable to the entity in this state p. Since this is a nonphysical situation,

we make the hypothesis that for p P S , e P % we have O(e, p) Þ é .
We represent mathematically the entity S by a set of experiments %, a

set of states S , a set of outcomes X, and a nonempty set of outcomes 2 5
{O(e, p) | e P %, p P S }. We denote the entity S by S(%, S , X, 2) and will

call it an `experiment state outcome entity,’ to indicate that the basic notions

that we use to describe the entity are the experiments, the states, and the
outcomes. Since we do not want to repeat each time the characterization

`experiment state outcome’ we will just write `the entity S(%, S , X, 2)’ in

those cases that it does not lead to confusion.

3. PREORDER AND ORTHOGONALITY

The archetypical situation that we consider is that of an entity S(%, S ,

X, 2) that `is’ in a state p P S and on which an experiment e P % can be
performed that gives rise an outcome x (e, p) P O(e, p). There are natural

structures on % 3 S , on S , on %, and on X. Our method to formalize these

structures is the following: first we introduce the physical ideas and then we

define the mathematical structure expressing these physical ideas. We do this

in such a way that the mathematical structure is independent of the physical
interpretation, but that, if interpreted, it gives rise to the original physical ideas.

Consider an entity S(%, S , X, 2) and two states p, q P S . If it is such

that for all experiments e P % whenever S is in state p, the set of outcomes

that can occur for an experiment e is contained in the set of outcomes that

can occur for the experiment e if S is in the state q, we say that p `implies’

q and denote p , q. We call this implication the `state implication.’ This is
the first example of a physical idea that we want to formalize. Let us first

introduce a mathematical definition.

Definition 1 (preorder, equivalence). Consider a set Z and a, b, c P Z.

The relation , is a preorder relation iff

a , a

a , b, b , c Þ a , c (1)
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We say that two elements a, b P Z are equivalent, and we denote a ’ b, iff

a , b and b , a.

Definition 2 (state implication). For an entity S(%, S , X, 2), for e P %
and p, q P S , we define

p , e q Û O(e, p) , O(e, q) (2)

p , q Û " f P %, p , f q (3)

and we say respectively that p `e-implies’ q and that p `implies’ q, and call

, e the `e-state implication’ and , the state implication.

Theorem 1. For an entity S(%, S , X, 2), the state implications , e and
, introduced on S in Definition 2 are preorder relations.

Proof. Clearly for p P S we have p , p. Consider p, q, r P S such

that p , q and q , r. Then " e P % we have O(e, p) , O(e, q) and O(e,

q) , O(e, r). From this it follows that " e P % we have O(e, p) , O(e, q),

which shows that p , r.

In a similar way we introduce natural implications on % 3 S and on %
that we call the `central implication’ and the `experiment implication.’

Definition 3 (central implication, experiment implication). For an entity

S(%, S , X, 2), for (e, p), ( f, q) P % 3 S , e, f P %, and p P S we define

(e, p) , ( f, q) Û O(e, p) , O( f, q) (4)

e , p f Û O(e, p) , O( f, p) (5)

e , f Û " q P S , e , q f (6)

and we respectively say (e, p) `implies’ ( f, q), e `p-implies’ f, and e `implies’

f, and call these implications respectively the `central implication,’ the `p-

experiment implication,’ and the `experiment implication.’

Theorem 2. For an entity S(%, S , X, 2), the implication relations , and
, p defined on % 3 S and on % in Definition 3 are preorder relations.

Consider an entity S(%,, S , X, 2) and two states p, q P S . If state p
and state q can be `distinguished’ for the entity S, then we say that p and q
are `orthogonal’ and we denote p ’ q. Before we formalize this physical

concept of `distinguished states’ in our approach, let us introduce the mathe-

matical concept of an orthogonality relation.
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Definition 4 (orthogonality). Consider a set Z and a, b P Z. The relation

’ is an orthogonality relation iff

a ’ ¤ a
(7)

a ’ b Þ b ’ a

Definition 5 (state orthogonality). For an entity S(%, S , X, 2) and for

p, q P S we define

p ’ e q Û O(e, p) ù O(e, q) 5 0¤ (8)

p ’ q Û $ e P %, p ’ e q (9)

we say that p is `e-orthogonal’ to q if p ’ e q, and p is `orthogonal’ to q if

p ’ q. We call ’ e the `e-state orthogonali ty’ and ’ the `state orthogonality.’

Theorem 3. For an entity S(%, S , X, 2), the e-state orthogonality ’ e

and the state orthogonality ’ introduced on S in definition 5 is an orthogonal-

ity relation.

Proof. Clearly for p P S we have p ’ ¤e p and p ’ ¤ p. Consider p, q P
S such that p ’ e q. Then O(e, p) ù O(e, q) 5 0¤ and hence q ’ e p. In an

analogous way we show that p ’ q implies q ’ p.

In a similar way we introduce natural orthogonality relations on % 3
S and on % that we call the `central orthogonality’ and the `experiment

orthogonality.’

Definition 6 (central orthogonality, experiment orthogonality). For an
entity S (%, S , X, 2), for (e, p), ( f, q) P % 3 S and e, f P % we define

(e, p) ’ ( f, q) Û O(e, p) ù O( f, q) 5 0¤ (10)

e ’ p f Û O(e, p) ù O(f, p) 5 0¤ (11)

e ’ f Û $ p P S , e ’ p f (12)

We say that (e, p) is `orthogonal’ to ( f, q), e is `p-orthogonal’ to f if e ’ p

f, and e is `orthogonal’ to f if e ’ f. We call the orthogonality relations
respectively the `central orthogonali ty,’ the `p-experiment orthogonality,’ and

the `experiment orthogonality.’

There exists a natural orthogonality relation on the set of outcomes.

Definition 7 (outcome orthogonality). For an entity S(%, S , X, 2) and

x, y P X we define

x ’ e, p y Û x, y P O(e, p), x Þ y (13)

x ’ y Û $ e P %, p P S , x ’ e, p y (14)
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we say that x is (e, p)-orthogonal to y if x ’ e,p y and x is orthogonal to y if

x ’ y, and we call these relations respectively the `(e, p)-outcome orthogonal-

ity’ and the `outcome orthogonality.’

Theorem 4. Consider an entity S(%, S , X, 2). The central orthogonali ty,

the p-experiment orthogonali ty, and the experiment orthogonality as intro-

duced in Definition 6 and the outcome orthogonali ty as introduced in Defini-

tion 7 are orthogonality relations.

Proposition 1. For an entity S(%, S , X, 2) and (e, p), ( f, q) P % 3 S ,
p, q P S , and e, f P % we have

(e, p) , ( f, q) Þ (e, p) ’ ¤ ( f, q) (15)

p , q Þ p ’ ¤ q (16)

e , f Þ e ’ ¤ f (17)

Moreover, the orthogonalit ies defined on % 3 S , %, and S , have the follow-

ing property:

a ’ b, c , a, d , b Þ c ’ d (18)

We remark that a couple (e, p) is equivalent with a couple ( f, q), and
we denote (e, p) ’ ( f, q), iff (e, p) , ( f, q) and ( f, q) , (e, p), that two

states p, q P S are equivalent, and we denote p ’ q, iff p , q, and q , p,

and that two experiments e, f P % are equivalent, and we denote e ’ f, iff

e , f and f , e.

Definition 8 (eigenstate, eigencouple). Suppose that we have an entity

S(%, S , X, 2). We say that a state p P S is an `eigenstate’ for the experiment
e P % with `eigenoutcome’ x (e, p) iff O(e, p) is a singleton, and hence O(e,

p) 5 {x (e, p)}. We also say in this case that (e, p) is an eigencouple with

eigenoutcome x (e, p).

If the state p P S is an eigenstate of the experiment e P % with

eigenoutcome x (e, p), this means that the experiment e has a `determined’
outcome for S being in state p.

4. MIXED STATES, MIXED EXPERIMENTS, AND EVENTS

Often we are in a position that we `lack knowledge’ about the state p
in which the entity S `is’ or about the experiment e that will be performed
on the entity, or about the outcome that will occur. We should include a

description of this possible lack of knowledge in our formalism. Suppose

that we have an entity S(%, S , X, 2). Consider nonempty subsets P , S , E,

, % and A , X. If we know that the entity is in one of the states of P, but
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we do not know in which one exactly, we are in a situation of `lack of

knowledge’ about the state of the entity, and we will indicate this situation

by the mixed state p (P). If we know that an experiment of E will be performed,
but we do not know exactly which one, we will indicate this situation by the

mixed experiment e (E ). If one of the outcomes of A occurs, but we do not

know which one exactly, we shall say that the event x (A ) connected to

A occurs.

At first sight we would think that to one subset P , S can correspond

different situations of `lack of knowledge’ and hence different mixed states.
Similarly one subset E , % can give rise to different mixed experiments and

one subset A , X to different events. This is in fact true, but we will choose

to distinguish these different situations of lack of knowledge by means of

the probability structure that we shall introduce later. At this stage of the

formalism, we mean by mixed state (mixed experiment, event) the specifica-

tion of a situation of lack of knowledge where we do not know its nature.
We lack the knowledge and also lack the knowledge about the nature of this

lack of knowledge. This is again a unique situation and it allows us to

introduce mixed states, mixed experiments, and events in the following way.

Definition 9 (mixed experiments, mixed states, and events). Consider

an entity S(%, S , X, 2), and given nonempty subsets E , %, P , S , and A ,
X. The mixed experiment e (E ) consists in performing one of the experiments
f P E. The entity is in a mixed state p (P) iff it is in one of the states q P
P. An event x (A ) occurs iff one of the outcomes y P A occurs.

Obviously we can consider a state q as being the trivial mixed state on

the singleton {q} and an experiment f to be the mixed experiment on the

singleton { f} and an outcome y to be the event connected with the single-

ton {y}.

Proposition 2. Suppose that we have an entity S(%, S , X, 2). For f P
%, q P S , and y P X we have

q 5 p ({q}), f 5 e ({ f}), y 5 x ({y}) (19)

for the mixed state p (P) and the mixed experiment e (E ) we have

O(e (E ), p) 5 ø
e P E

O(e, p,) O(e, p (P)) 5 ø
p P P

O(e, p) (20)

O(e (E ), p (P)) 5 ø
e P E,p P P

O(e, p) (21)

Definition 10 (mixed entity). An entity S(%, S , X, 2) is a `mixed entity’

iff there is a well-defined set of mixed experiments, mixed states, and events

associated to the entity. We denote the sets of mixed experiments, mixed

states, and events by M (%), M ( S ), and M (X ), respectively.
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Definition 11. Suppose that we have a mixed entity S(%, S , X, 2) with

set of mixed states M( S ), and set of mixed experiments M(%), and set of

events M (X). We generalize the preorder relations and the orthogonality
relations that are defined on % 3 S , %, S , and X to preorder relations and

orthogonality relations defined on M(%) 3 M( S ), M(%), M( S ), and M(X).

All the generalizations are straightforward, with the exception of the one

for the events, which we will state explicitly: two events x (A ) and x (B)

are (e, p)-orthogonal iff A , O(e, p) and B , O(e, p) and A ù B 5 0¤: we

denote x (A ) ’ e,p x (B). Two events x (A) and x (B) are orthogonal iff there
exist e P % and p P S such that x (A) ’ e,p x (B). We introduce a preorder

relation on the set of events in a straightforward way: x (A ) , x (B) Û
A , B.

We have to verify whether the preorder relation and the orthogonality

relation, that we generalize on M(%) 3 M( S ), on M(%), on M( S ), and on

M(X ) coincide with the old preorder relation and orthogonality relation on

% 3 S , %, S and X. Since we have e ({ f}) 5 f for all f P % and p ({q}) 5 q
for all q P S , this is easily checked for the preorder relation and orthogonality
relation. For the relations on M(%), M( S ), and M(X ) we have to be more

careful.

Proposition 3. Suppose that we have a mixed entity S(%, S , X, 2) with

set of mixed states M( S ), set of mixed experiments M(%), and set of events

M(X ). For states q, r P S , experiments f, g P %, and outcomes y, z, P X,

we have

p ({q}) , p ({r}) Û q , r p ({q}) ’ e({f}) p ({r}) Û q ’ f r

p ({q}) ’ p ({r}) Û q ’ r e ({ f}) , e ({g}) Û f , g (22)

e ({ f}) ’ p({q}) e ({g}) Û f ’ q g e ({ f}) ’ e ({g}) Û f ’ g

x ({y}) ’ e, p x ({z}) Û y ’ e, p z x ({y}) ’ x ({z}) Û y ’ z

Proof. Let us prove some of the equalities. We have p ({q}) , p ({r}) Û
" f P %: O(e ({ f}), p ({q})) , O(e ({ f}), p ({q})) Û " f P %: O( f, q) ,
O(f, r) Û q , r. We have p ({q}) ’ p ({r}) Û $ e (E ) P M(%) such that

O(e (E ), q) ù O(e (E ), r) 5 0¤. But this is equivalent to the fact that O(e, q)

ù O(e, r) 5 0¤, " e P E, which shows that q ’ r.

Proposition 4. Suppose that we have a mixed entity S(%, S , X, 2) with

set of mixed states M( S ), set of mixed experiments M(%), and set of events

M(X ). For mixed states p(P), p(Q), mixed experiments e(E ), e(F ), and events

x (A ), x (B) we have
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E , F Þ e(E ) , e (F ), P , Q Þ p (P) , p(Q) (23)

(e (E ), p(P)) , (e (F ), p(Q)) Û (e, p) , (e (F ), p (Q)) " e P E, p P P

(e (E ), p (P)) ’ (e (F ), p (Q)) Û (e, p) ’ ( f, q)

" e P E, f P F, p P P, q P Q

p(P) , p(Q) Û p , p(Q) " p P P

e(E ) , e(F ) Û e , e(F ) " e P E

p(P) ’ e(E) p(Q) Û p ’ e(E) q " p P P, q P Q (24)

e(E ) ’ p(P) e(F ) Û e ’ p(P) f " e P E, f P F (25)

x(A ) ’ e, p x(B) Û x ’ e, p y " x P A, y P B

p(P) ’ p(Q) Þ p ’ q " p P P, q P Q

e(E ) ’ e(F ) Þ e ’ f " e P E, f P F

x(A ) ’ x(B) Þ x ’ y " x P A, y P B

Proof. We have (e(E ), p(P)) , (e(F ), p(Q)) Û O(e (E ), p(P)) , O(e(F ),

p(Q)) Û ø e P E,p P P O(e, p) , O(e(F ), p (Q)) Û O(e, p) , O(e(F ), p(Q)) " e
P E, p P P. We also have (e(E ), p(P)) ’ (e(F ), p(Q)) Û O(e(E ),

p (P)) ù O(e(F ), p(Q)) 5 0¤ Û O(e(E ), p(P)) , O(e(F ), p(Q))C Û ø e P E, p P P

O(e, p) , ù f P F,q P Q O(f, q)C Û O(e, p) , O(f, q)C " e P E, p P P, f P F,
q P Q Û (e, p) ’ ( f, q) " e P E, p P P, f P F, q P Q. The other implications

are proved in an analogous way.

Definition 12 (supremum and infimum). Suppose that Z is a set with a

preorder relation , . Consider a set {aj , j P J } of elements of Z. We say

that Ú j P Jaj is a supremum and Ù j P Jaj is an infimum iff for b P Z we have

aj , b " j P J Û Ú
j P J

aj , b (26)

b , aj " j P J Û b , Ù
j P J

aj (27)

Theorem 5. Suppose that we have a mixed entity S(%, S , X, 2) with set

of mixed states M ( S ), set of mixed experiments M(%), and set of events

M(X ). The mixed experiment e(E ) P M(%) is a supremum of the set of
experiments E for the preorder relation on M(%), the mixed state p(P) is a

supremum for the set of states P for the preorder relation on M( S ), and the

event x(A ) is a supremum for the set of outcomes A for the preorder relation

on M(X ).



302 Aerts

Proof. We have that f , e (E ) for f P E. Suppose now that f , g for

all f P E. This means that O(f, p) , O(g, p) for all p P M( S ) and f P E.

But then ù f P EO(f, p) , O(g, p) for all p P M ( S ). Hence O(e(E ), p) ,
O(g, p) for all p P M( S ).

Definition 13. Suppose that we have a mixed entity S(%, S , X, 2) with

set of mixed states M ( S ), set of mixed experiments M (%), and set of events

M(X ). Because of the foregoing proposition we shall also denote e(E ) 5
Ú f P E f, p(P) 5 Ú q P Pq, and x(A ) 5 Ú y P x(A)y.

We have to remark that although e(E ) 5 Ú f P E f is well defined, it is not

necessarily a unique supremum of the set E. The same remark holds for P.

Suppose that we consider a set of mixed states P , M( S ) of an entity
S. Then we can again consider the situation of `lack of knowledge’ where

we know that the entity is in one of the mixed states q P P, but we do not

know in which one: let us denote this mixed state (of mixed states) by p(P).

This is again a mixed state, but at first sight it is a type of mixed state that

we have not yet considered explicitly in our formalism, namely a mixed state

of mixed states. If this were really a new type of mixed state, we would
arrive in a regressum ad infinitum, and this would be a problem. Luckily

this is not the case. The new type p (P) of mixed state is of the type that we

have already introduced. Indeed, suppose that we denote an element q P P
by p(Qq), where Qq , S is the set of states on which q is a mixed state. To

the state p (P) of lack of knowledge about the set of mixed states q P P
corresponds the state of lack of knowledge about the set ø q P PQq , i.e.,
Ú q P Pp(Qq). And since the mixed state p(P) exists, Ú q P Pp(Qq) P M( S ).

Proposition 5. Suppose that we have a mixed entity S(%, S , X, 2) with

set of mixed states M( S ), set of mixed experiments M(%), and set of events

M(X ). We have

M (M( S )) , M ( S ), M(M (%)) , M(%), M (M(X ) , M(X ) (28)

Definition 14. Suppose that we have a mixed entity S(%, S , X, 2) with

set of mixed states M ( S ), set of mixed experiments M (%), and set of events

M(X ). We will say that the entity is `full’ of mixed states iff there exists a

mixed state p(P) connected to each subset P , S . We will say that the entity
is `full’ of mixed experiments iff there exists a mixed experiment e(E )

connected to each subset E , %. We will say that an entity is `full’ of events

iff there exists an event x(A ) for each A , X.

Definition 15 (complete preorder set). Consider a set Z with a preorder

relation , ; then Z is a `complete’ preorder set iff for each subset of Z there

exists a supremum and an infimum.
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Theorem 6. Suppose that we have a mixed entity S(%, S , X, 2) with set

of mixed states M ( S ), set of mixed experiments M(%), and set of events

M(X ). If the entity is full of mixed states, then the preorder relation on M ( S )
gives rise to a complete preorder set M ( S ). If the entity is full of mixed

measurements, the preorder relation on M(%) gives rise to a complete preorder

set M(%). If the entity is full of events, the preorder relation on M (X ) gives

rise to a complete preorder set M (X ). More concretely, for P i , S and P 5
ø i P i , for Ej , % and E 5 ø jEj , and for Ak , X and A 5 ø k Ak we have

p (P) 5 ~
i

p (Pi), e (E ) 5 ~
j

e (Ej), x (A ) 5 ~
k

x (A k) (29)

5. PROBABILITY

So far we have always referred to `possible outcomes.’ For most of the

entities studied in physics these possibilities will be structured in such a way
that they give rise to probabilities as limits of relative frequencies of repeated

experiments. Indeed, for an entity S in state p, for an experiment e and for

an outcome x we introduce the probability that, if the entity is in state p, the

experiment e gives the outcome x, denoted by m (e, p, x), as the limit of the

relative frequency of the occurrence of the outcome x.

Definition 16. Suppose that we have a mixed entity S(%, S , X, 2) with

set of mixed states M ( S ), set of mixed experiments M (%), and set of events

M(X ). Consider a map m :

m : M (%) 3 M( S ) 3 M(X ) ® [0, 1], (e, p, x) j m (e, p, x) (30)

We say that m is a generalized probability measure iff for ei P M(%), pj P
M( S ), and xk P M (X ), countable sets, such that ei ’ el for i Þ l, pj ’ pm

for j Þ m, and xk ’ xn for k Þ n, and such that Ú i ei is a mixed experiment,
Ú j pj is a mixed state, and Ú k xk is an event, we have

m ( Ú i ei , Ú j pj , Ú k xk) 5 o
i,j,k

m (ei , pj , xk) (31)

we also have that x(O(e, p)) is an event and we have

m (e, p, x(O(e, p))) 5 1 (32)

We say that the entity is probabilistic iff the different states of lack of

knowledge are described by different generalized probability measures m that

correspond to limits of relative frequencies of outcomes in these states of
lack of knowledge. Hence the probability m (e, p, x) is the probability that

the event x occurs when the entity S is in state p and the experiment e is

performed in the state of lack of knowledge described by m . This motivates

the following definition:
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Definition 17. Suppose that we have a mixed entity S(%, S , X, 2) with

set of mixed states M ( S ), set of mixed experiments M (%), and set of events

M(X ). The entity S is probabilistic iff it has an associated well-defined set
} of generalized probability measures. We denote a probabilistic entity by

S(%, S , X, 2, }).

From now on we will only distinguish between states and mixed states,

experiments and mixed experiments, and outcomes and events when it is
explicitly necessary. The results that are valid for a general entity are of

course also valid for a mixed entity, considered as a special type of entity.

6. STATE PROPERTY ENTITIES

In this section we want to introduce the concept of `property’ of an

entity. We give a new description that is inspired by the way that properties

are introduced in the Geneva±Brussels approach (Piron 1976, 1989, 1990;

Aerts 1981, 1982, 1983). The main differences are (i) we distinguish between

properties and `testable’ properties, a difference that has not been made in
the earlier approaches, and (ii) we consider a property and a state as different

concepts, while in the earlier approaches a state was represented by the set

of all actual properties.

Let us consider an entity S. We remark that in this section S is not

necessarily an `experiment state outcome entity.’ A property a of S is an

attribute of S. The property a can be `actual,’ which means that S is in a
state such that it `has’ the property a `in acto,’ or `potential,’ which means

that S is in a state such that it does not have the property a, but can eventually

acquire it. Let us denote the set of properties corresponding to the entity S
by +. If the entity S is in a state p, we can consider the set j ( p) of all

properties that are actual. We call j ( p) the property state connected to p. Let
us call 7 the set of property states.

If for the entity being in an arbitrary state p P S we have that if a P
+ is `actual’ then also b P + is `actual,’ we say that a `implies’ b (or a is

`stronger than’ b). This `implication’ introduces a `preorder ’ relation on the

set of properties +. There exists also a natural preorder relation on the set

of states for a state property entity. Indeed, if for two states p, q P S , the
set of properties j ( p) that is actual if the entity is in state p contains the set

of properties j (q) that is actual if the entity is in state q, then we say that p
`property implies’ q.

We have now introduced all the necessary physical concepts to give a

formal definition of an entity described by its states and properties.

Definition 18 (state property entity). We say that S is a state property

entity iff it is characterized by a set of states S , a set of properties +, and

a function j :
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j : S ® 3(+), p j j ( p) (33)

where j ( p) is the set of properties that are `actual’ if the entity S is in state

p. We call j the state property function. Hence, for a property a P + and a
state p P S we have

a is actual if S is in state p Û a P j ( p) (34)

We call j ( p) the property state corresponding to p, and introduce 7 5 j ( S )

the set of all property states. Further, we have that for p, q P S and a, b P +

p a q Û j (q) , j ( p) (35)

a a b Û if for p P S we have a P j ( p), then b P j ( p) (36)

and we say that p `property implies’ q and a `implies’ b and call this

implication the `property implication.’ We denote a state property entity S
by S( S , +, j ).

Theorem 7. Consider a state property entity S( S , +, j ). The implications

on S and on + that are introduced in definition 18 are preorder relations.

Definition 19 (preorder set with an ordering set). Consider a set Z with

a preorder relation , and consider a set U , 3(Z ). We say that U is an
ordering set for Z iff for a, b P Z we have a , b iff whenever u P U such

that a P u we have b P u.

Theorem 8. Consider a state property entity S( S , +, j ); then the set of

property states j ( S ) 5 7 is an ordering set for +, , .

Proof. Consider a, b P + such that a a b. Consider p P S such that
a P j ( p); then b P j ( p). On the other hand suppose that for j ( p) P 7 we

have a P j ( p) implies b P j ( p); then a a b.

It makes sense to identify equivalent properties. Indeed, equivalent prop-

erties are always `actual’ and potential together which makes it possible to

indicate them as `the same property’ for the entity S. This is the reason that
we introduce the following type of entity where such an identification has

been made.

Definition 20 (identified state property entity). Consider a state property

entity S( S , +, j ). We say that S( S , +, j ) is an `identified’ state property

entity iff for a, b P + we have a ’ b Þ a 5 b.

Theorem 9. For an identified state property entity S( S , +, j ), the preorder

relation on the set of properties is a partial order relation.

We have formalized the concept of state property entity. This is an entity

for which we only consider the `ontological’ notions of `state’ and `property’
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and how they are related. Properties can often also be directly tested. We

will analyze now how this can be formalized. Consider an experiment e and

a subset A , O(e) of the outcome set of e. Suppose that we have a situation
such that we are `certain’ that if we would perform e we find an outcome

contained in A. Then it is possible to make correspond a `property’ a (e, A )

to this situation, a (e, A ) being `actual’ iff this situation is present. The

property a(e, A ) that we have defined in this way is a `testable’ property.

Definition 21. Consider an entity S(%, S , X, 2) and an experiment e P
%. For a set of outcomes A , O(e) we introduce an e-testable property a(A )
such that

a (A ) is actual if S is in state p Û O(e, p) , A (37)

We denote the set of e-testable properties of S by +(e).

We will see now that a state property entity for which the set of properties

is +(e) for a given experiment e has more structure than a general state
property entity. Let us investigate this additional structure. Although we need

only one experiment to define a state property entity for which the set of

properties is +(e), it will be more interestingÐ and we will not lose generality

if we doÐ to investigate the structure of these entities for the case of an

experiment state outcome entity. Let us first introduce a mathematical

definition.

Proposition 6. Consider an entity S(%, S , X, 2) and for e P % the set

of e-testable properties +(e). Consider also the state property entity S( S ,

+(e), j e). For p P S , A, B , O(e), (Ai)i , Ai , O(e), and q, r P S we have

a (A ) P j e( p) Û O(e, p) , A (38)

a (A ) a a (B) Û " p P S : O(e, p) , A, then O(e, p) , B (39)

a (Aj) P j e( p) " j Û a ( ù i Ai) P j e( p) (40)

q a r Û q , e r (41)

Proof. The proofs of (38) and (39) are immediate consequences of

Definitions 18 and 21. Let us prove (40). We have a (Aj) P j e( p) " j Û
O(e, p) , Aj " j Û O(e, p) , ù i Ai Û a ( ù i Ai) P j e( p). Let us prove (41).

Suppose that q a r. This means that j e(r) , j e(q). We have that a (O(e, r))
P j e(r) and hence a (O(e, r)) P j e(q). From this, using (38), it follows that
O(e, q) , O(e, r) and as a consequence we have q , e r. Suppose now that

q , e r and hence O(e, q) , O(e, r). Consider a (A ) P j e(r). Then we have

O(e, q) , O(e, r) , A and hence a (A ) P j e(q). This shows that j e(r) ,
j e(q) and as a consequence q a r.
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Theorem 10. Consider an entity S(%, S , X, 2) and for e P % the set of

e-testable properties +(e). The preorder set of properties of the state property

entity S( S , +(e), j ) is a complete preorder set (see Definition 15) with a
maximal element I 5 a (O(e)) and minimal element 0 5 a (0¤).

Proof. Consider (ai)i , ai P +(e). For each ai there exists a set of outcomes

Ai , O(e) such that a (A i) 5 ai. Consider the e-testable property a ( ù i Ai).
Let us show that a ( ù i Ai) is an infimum for the set (ai)i. From (40) it follows

that a ( ù i Ai) a a (Aj) " j. Suppose that a (A ) a a (Aj) " j. Consider O(e, p)

, A. From this it follows that O(e, p) , Aj " j and hence O(e, p) , ù i Ai.

This shows, taking into account (39), that a (A ) a a ( ù i Ai). So a ( ù i Ai) is

an infimum for the set (ai)i. There is a natural construction for a supremum
that consists in taking the infimum of all elements that are `implied’ by all

elements of the considered set. We remark, however, that this supremum

depends in principle on all elements of the preordered set. Let us identify a

maximal and a minimal element. We have O (e, p) , O(e) always and hence

a (A ) a a (O(e)) for an arbitrary A , O(e). This shows that I 5 a (O(e)) is

a maximal element of +(e). On the contrary, O(e, p) , 0¤never, which shows
that a (0¤) a a (A ) for an arbitrary A , O(e). Hence a (0¤) is a minimal element

of +(e).

We will introduce now the mathematical concept of a `state property

system’ and then show that the state property entity S( S , +(e), j e) (once

properties are identified) is well described by a state property system.

Definition 22 (state property system). We say that ( S , a , +, a , ` , ~ ,

j ), or more concisely ( S +, j ), is a state property system iff ( S , a ) is a

preordered set, (+, a , ` , ~ ) is a complete lattice, and j is a function:

j : S ® 3(+), p j j ( p) (42)

For p P S , I the maximal element and 0 the minimal element of +, and ai

P +, we have

I P j ( p), 0 ¸ j ( p), ai P j ( p) Û ` i ai P j ( p) (43)

Further, for p, q P S and for a, b, ai P +, we have

p a q Û j (q) , j ( p) (44)

a a b Û a P j (r), then b P j (r) " r P S (45)

Theorem 11. Consider an entity S(%, S , X, 2) and for e P % we consider

the identified state property entity S( S , +(e), j e); then ( S , +(e), j e) is a state

property system.

Proof. We only have to remark that for an identified state property entity,

the infimum and supremum that are constructed in (15) are the infimum and
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supremum for the partially ordered set +(e). This makes +(e) into a complete

lattice with maximal element I and minimal element 0.

We will now show that the state property systems are naturally connected
to closure structures on the set of states.

Definition 23 (Cartan map). Consider a state property entity S( S ,+,j ).

We introduce the function

k : + ® 3( S ), a j k (a) (46)

p P k (a) Û a P j ( p) (47)

which we call the `Cartan map’ (Aerts, 1981, 1982, 1983; Piron, 1990).

The meaning of the Cartan map is the following: k (a) is the set of all

states that make a actual. Let us now introduce the eigenmaps.

Definition 24 (eigenmaps on the states). Consider an experiment state

outcome entity S(%, S , X, 2). For e P % and A , O(e), we define a map

eige , which we shall call the eigenmap corresponding to the experiment e:

eige: 3(O(e)) ® 3( S ), A j eige(A ) (48)

p P eige(A ) Û O(e, p) , A (49)

The eigenmap eige connects a subset A of outcomes of e with a subset of

states eige(A ) such that if the entity S is in one of the states of eige (A ), one

of the outcomes of A occurs with certainty.

Proposition 7. Consider an entity S(%, S , X, 2) and for e P % consider

the state property entity S( S , +(e), j e). For a (A ) P +(e) we have

k (a) 5 eige(A ) (50)

Before we proceed, let us point out some of the properties of the Cartan map

and of the eigenmaps.

Proposition 8. Consider a state property entity S( S , +, j ). For a P +
we have

a a b Û k (a) , k (b) (51)

Proposition 9. Consider an entity S(%, S , X, 2). The map eige introduced

in Definition 24 satisfies the following properties:

eige(0¤) 5 0¤ (52)

eige(O(e)) 5 S (53)

eige( ù i Ai) 5 ù i eige(Ai) (54)
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Proof. p P eige( ù i Ai) Û O(e, p) , ù i Ai Û O(e, p) , Ai " i Û p P
eige(Ai) " i Û p P ù i eige(Ai).

Let us introduce some definitions.

Definition 25 (closure system). Consider a set W. We say that ^ ,
3(W ) is a closure system iff

0¤ P ^ (55)

W P ^ (56)

Fi P ^ Þ ù
i

Fi P ^ (57)

Definition 26 (closure operator). Consider a set W. We say that cl is a

closure operator on W iff, for K, L , W, we have

K , cl(K ) (58)

K , L Þ cl(K ) , cl(L) (59)

cl(cl(K )) 5 cl(K ) (60)

cl(0¤) 5 0¤ (61)

Proposition 10. If a set W is equipped with a closure operator cl and

we define a subset F , W to be closed iff cl(F ) 5 F, then the set ^ of
closed subsets of W forms a closure system on W. Suppose on the other hand

that we consider a closure system ^ on W. If, for an arbitrary K , S , we define

cl(K ) 5 ù
k , F,F P ^

F (62)

then cl is a closure operator on W, and ^ is the set of closed subsets of W
defined by this closure operator.

Proof. First we prove (57). We have that cl( ù i Fi) , cl(F i) " i implies

cl( ù i F i) , ù i cl(F i) 5 ù i F i , cl( ù i F i). Now we show that (15) defines
a closure operator on W. So consider K, L , W. Clearly cl(0¤) 5 0¤, K ,
cl(K ) and if K , L then cl(K ) , cl(L). If F P ^, then cl(F ) 5 F, whence

cl(K ) P ^ implies cl(cl(K )) 5 cl(K ). This shows that cl is a closure operator.

Consider a set K such that cl(K ) 5 K; then K 5 ù K , F,F P ^ F, and hence

K P ^. It follows that ^ is the set of closed subsets for this cl.

Theorem 12. Consider an entity S(%, S , X, 2), and eigenmaps eige , e
P %. Let us denote the image of an eigen map eige by ^(e); in other words,

^(e) 5 {F , S | $ A , O(e), F 5 eige(A )} (63)

then ^(e) is a closure system on S . We will call the elements of ^(e) the

e-eigenclosed sets.
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Proof. We have eige(0¤) 5 0¤ and eige(O(e)) 5 S . Consider F i P ^(e).

Then F i 5 eige(Ai). We have ù i Fi 5 ù i eige(Ai) 5 eige ( ù i Ai). This shows

that ù i Fi P ^(e).

Theorem 13. Consider an entity S(%, S , X, 2) and for e P % consider

the state property entity S( S , +(e), j e). We have

k (+(e) 5 ^(e) (64)

Proof. Consider F P k (+(e)). Then there exists a (A ) P +(e) such that

k (a (A )) 5 F. From (50) it follows that k (a (A )) 5 eige(A ) and hence F P
^(e). Suppose now that F P ^(e); then we have F 5 eige(A ) for some A
, O(e). Again from (50) it follows that F 5 k (a (A )) and hence F P k (+(e)).

7. STATE PROPERTY SYSTEMS AND CLOSURE SPACES

From Theorem 11 it follows that an identified state property entity S( S ,

+(e), j e) is represented mathematically by a state property system. From

Theorems 12 and 13 it follows that there is a closure system on the states
connected with the state property entity S( S , +(e), j e). We will see now that

the connection between state property systems and closure systems is even

much more intimate than we would expect from the foregoing section. Since

we will encounter the mathematical concepts of state property system and

closure system again for the description of entities, we want to make the

results of this section independent of the physical content. Therefore we
introduce some concepts again that have been introduced earlier within a

specific physical context.

Proposition 11. Suppose that ( S , +, j ) is a state property system. We

introduce the function k , the Cartan map:

k : + ® 3( S ), a j k (a) 5 {p | a P j ( p} (65)

For a, b, ai P + we have

k (I ) 5 S (66)

k (0) 5 0¤ (67)

a a b Û k (a) , k (b) (68)

k ( Ù i ai) 5 ù
i

k (ai) (69)

Proof. Since I P j ( p) " p P S , we have k (I ) 5 S . Since 0 ¸ j ( p)

" p P S , we have k (0) 5 0¤. Take a a b and consider p P k (a). Then a
P j ( p) and since a a b we have b P j ( p). This implies that p P k (b). Hence
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we have shown that k (a) , k (b). Take now k (a) , k (b). Consider p P S
such that a P j ( p). Then p P k (a) and hence p P k (b). From this it follows

that b P j ( p). This means that a a b. We have Ù i ai a aj " j. This implies
that k ( Ù i ai) , k (aj) " j. Hence k ( Ù i ai) , ù i k (ai). Take now p P ù i k (ai);

then p P k (aj) " j. Hence aj P j ( p) " j , which implies that Ù i ai P j ( p).

From this it follows that p P k ( Ù i ai). As a consequence we have ù i k (ai)

, k ( Ù i ai). This shows that k ( Ù i ai) 5 ù i k (ai).

Theorem 14. Suppose that ( S , +, j ) is a state property system. Let us
introduce ^ 5 { k (a) | a P +}. Then ^ is a closure system on S .

Proof. From the foregoing theorem it follows that S P ^ and 0¤ P ^.

Consider F i P ^. Then there exists ai P + such that k (ai) 5 Fi. We have

k ( Ù i ai) 5 ù i k (ai) 5 ù i Fi. This shows that ù i Fi P ^.

This theorem shows that to a state property system there corresponds
in a natural way a closure system on the set of states, where the properties

are represented by the closed subsets. We can show that to each closure

system on the set of states there corresponds also a state property system.

Theorem 15. Consider a set S with a closure system ^ on S . We define

+ in the following way. The elements of + are the elements of ^; hence
+ 5 ^, where we identify the maximal element I of + with S and the

minimal element 0 of + with 0¤. For F, G P + we define F a G iff F , G.

For F i P + we define Ù i F i 5 ù i Fi and Ú i Fi 5 cl( ø i Fi). We introduce

the function j in the following way:

j : S ® 3(+), p j {F | F P ^, p P F } (70)

We introduce a preorder relation on S . For p, q P S we define

p a q Û j (q) , j ( p) (71)

Then ( S , +, j ) is a state property system.

Proof. It is easy to show that +, a , Ù , Ú is a complete lattice. We have
I P j ( p) " p P S and 0 ¸ j ( p) " p P S . Suppose that Fi P j ( p) " i. This

means that p P Fi " i and hence p P ù i F i. As a consequence we have

ù i Fi P j ( p). Let us verify that 7 5 { j ( p) | p P S } is an ordering set.

Suppose that F, G P + and F , G. Consider p such that F P j ( p) and

hence p P F. This implies that p P G and hence G P j ( p). Suppose now

that for p P S we have that F P j ( p) implies that G P j ( p). Consider then
p P F and hence F P j ( p). Then G P j ( p) and as a consequence p P G.

This shows that F , G. It is easy to verify that a is a preorder on S .

Theorems 14 and 15 show that there is a natural correspondence between

state property systems and closure systems. Let us introduce the morphisms
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of these structures. Consider two state property systems ( S , +, j ) and ( S 8, +8,
j 8). As we have explained, both state property systems describe respectively

identified state property entities S( S , +, j ) and S8( S 8, +8, j 8). We will arrive
at the notion of morphism by analyzing the situation where the entity S is a

subentity of the entity S8. If the entity S is a subentity of the entity S8, then

we have natural requirements that have to be satisfied.

(i) If the entity S8 is in a state p8, then also the entity S is in a state

m (p8), and all states of S are of this type. This defines a surjective function

m from the set of states of S8 to the set of states of S.

(ii) If we consider a property a of the entity S, then there corresponds

a property n (a) of the entity S8 with this property a. This defines a function
n from the set of properties of S to the set of properties of S8.

Requirement of Covariance Connected to the Relation of `Being a
Subentity’ of `an Entity’

The most important and fundamental requirement as to the concept of
subentity and the derived concept of morphism will be put forward now. It

is a requirement of `covariance’ on the ontological level. We want to express

now that the reality of the physical phenomenon described by the entity or

by the subentity, depending of whether we consider a bigger piece (the entity)

or smaller piece (the subentity) of this reality, is independent of this choice.

This implies that if the entity S8 is in state p8, then the subentity S is
in state m (p8). Suppose that the property a is actual; then also the property

n (a) must be actual. This shows that we must have

a P j (m (p8)) Û n (a) P j 8( p8) (72)

We are ready now to present a formal definition of a morphism.

Definition 27. Consider two state property systems ( S , +, j ) and ( S 8,
+8, j 8). We say that a couple of functions (m, n) is a morphism iff m is
a function

m: S 8 ® S , p8 j m (p8) (73)

and n is a function

n: + ® +8, a j n (a) (74)

such that

a P j (m (p8)) Û n (a) P j 8( p8) (75)

Proposition 12. Consider two state property systems ( S , +, j ) and ( S 8,
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+8, j 8). The couple of functions (m, n) as introduced in definition 27 is a

morphism iff we have

j + m 5 n 2 1 + j 8 (76)

Proposition 13. Consider two state property systems ( S , +, j ) and ( S 8,
+8, j 8) connected by a morphism (m, n). For p8, q8 P S 8, a, b P +, ai P
+, we have

a a b Þ n (a) a n (b) (77)

n ( Ù i ai) 5 Ù i n (ai) (78)

n (I ) 5 I 8 (79)

n (0) 5 08 (80)

p8 a q8 Þ m (p8) a m (q8) (81)

Proof. Suppose that a a b. Consider j ( p8) such that n (a) P j 8( p8).
Then we have a P j (m (p8)). Since a a b we have b P j (m (p8)). From this

it follows that n (b) P j 8( p8). So we have shown that n (a) a n (b). We have

Ù i ai a aj " j and hence n ( Ù i ai) a n (aj) " j. This shows that n ( Ù i ai) a
Ù i n (ai). We still have to show that Ù i n (ai) a n ( Ù i ai). Consider j 8( p8) such
that Ù i n (ai) P j 8( p8). This implies that n (aj) P j 8( p8) " j. But from this it

follows that aj P j (m (p8)) " j and hence Ù i ai P j (m (p8)). As a consequence

we have n ( Ù i ai) P j 8( p8). But then we have shown that Ù i n (ai) a n ( Ù i ai).

As a consequence we have n ( Ù i ai) 5 Ù i n (ai). We have n (I ) a I 8. Consider

p8 P S 8; then I 8 P j 8( p8). We also have I P j (m (p8)), which implies that

n (I ) P j 8( p8)). This proves that I 8 a n (I ) and hence n (I ) 5 I 8. In an
analogous way we prove that n (0) 5 08. Suppose that p8 a q8. We then have

j 8(q8) , j 8( p8). From this it follows that n 2 1( j 8(q8)) , n 2 1( j 8( p8)). As

a consequence we have j (m (q8)) , j (m (p8)) and this implies that m (p8)
a m (q8).

Proposition 14. Suppose that we have two state property systems ( S ,
+, j ) and ( S 8, +8, j 8) connected by a morphism (m, n). Consider the Cartan

maps k and k 8 that connect these state property systems with their correspond-

ing closure systems ( S , ^) and ( S 8, ^8). For a P + we have

m 2 1( k (a)) 5 k 8(n (a)) (82)

Proof. We have p8 P m 2 1( k (a)) Û m (p8) P k (a) Û a P j (m (p8)) Û
n (a) P j 8( p8) Û p8 P k 8(n (a)).

Theorem 16. Suppose that we have two state property systems ( S +, j )

and ( S 8, +8, j 8) connected by a morphism (m, n) and the Cartan maps k and

k 8 that connect these state property systems with their corresponding closure
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systems ( S , ^) and ( S 8, ^8). The function m is a continuous function for

the closure systems.

Proof. Take a closed subset F P ^ and consider m 2 1(F ). Since F P ^
we have a P + such that k (a) 5 F. From the foregoing theorem we have

m 2 1(F ) 5 m 2 1( k (a)) 5 k 8(n (a)) P ^8. This shows that m is continuous.

We are now at the point of making explicit the powerful representation
that the closure system gives for a state property system. Let us identify the

morphisms of the closure systems that correspond to the morphisms that we

have introduced in the state property systems.

Theorem 17. Suppose that we have two closure systems ( S , ^) and ( S 8,
^8) and a continuous function m: S 8 ® S . Consider the state property systems

( S , +, j ) and ( S 8, +8, j 8) corresponding to these two closure systems, as

proposed in Theorem 15. If we define the couple (m, n) such that

n 5 m 2 1 (83)

then (m, n) is a morphism between the two state property systems.

Proof. We have to prove that the couple (m, m 2 1) satisfies that properties

of a state property morphism as put forward in Definition 27. Since m is

continuous we have that m 2 1 is a function from ^ to ^8. Let us show now
formula (75) using the definition of j and j 8 as put forward in Theorem 15.

We have F P j (m (p8)) Û m (p8) P F Û p8 P m 2 1(F ) Û m 2 1(F ) P j 8(p8).

Theorems 14 and 15 show that there is a natural correspondence between

state property systems and closure systems. Theorems 16 and 17 show that
also the morphisms of both structures correspond. This indicates that the

correspondence may be categorical. Indeed, we analyze the categorical aspect

of this correspondence in detail in Aerts et al. (1999) and show that the

category of state property systems and its morphisms and the category of

closure spaces and continuous functions are equivalent categories.

The set of all testable properties is given by ø e P % +(e). Let us remark
that a priori ø e P % +(e) is not a complete preorder set. This seems to contradict

the results of earlier work. Indeed Piron (1976, 1989, 1990) and Aerts (1981,

1982, 1983) show that the set of all testable properties, hence ø e P % +(e), is

a complete preorder set. We remark that in these earlier approaches equivalent

properties are identified such that identified state property entities are consid-
ered: the complete preorder set is then a complete lattice, but this is not the

origin of the problem that we want to point out here. We want to explain

why in the earlier approaches completeness was derived for the set of all

testable properties, while here we can only derive it for the set of testable

properties connected to one definite experiment. First we remark that in the
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earlier approaches the complete preorder set was constructed by introducing

explicitly all the mixed experiments. If we consider the mixed experiment

e (%) and the set of e (%)-testable properties +(e (%)), it can be shown that
`under a certain condition’ the set of e (%)-testable properties contains all the

other sets of e (E )-testable properties, where E , %. This means that ø e P %

+(e) 5 +(e (%)). We have shown (Aerts, 1994) that the condition that implies

this equality is a condition of `distinguishable experiments.’ This condition

of `distinguishable experiments’ leading to the completeness of the set of all

testable properties was unconsciously assumed in the already mentioned
earlier approaches (Piron 1976, 1989, 1990; Aerts 1981, 1982, 1983). There it

was taken for granted that an experiment, called test, question, or experimental

project in Piron (1976, 1989, 1990) and Aerts (1981, 1982, 1983), that can

be distinguished from all the others can be associated with each property

(e.g., by labeling the test by means of the property). At first sight it seems

indeed that it is always possible to do so. But in a formalism like the one
we propose here, the properties as well as the experiments that can be used

to test these properties are given from the start. It is against the `rules of the

game’ to introduce new experiments for the properties just with the aim of

being able to distinguish them from all the others. So we must conclude that

the completeness can a priori only be shown for the set of testable properties
connected to a definite experiment. Let us demonstrate the details of this

situation in our formalism.

Proposition 15. Consider an entity S(M (%), M ( S ), M (X ), 2), and sup-

pose that e (E ) P M (%) is a mixed experiment and consider A , O(e (E )).

We have

eige(E) (A ) 5 ù
e P E

eige(A ù O(e)) (84)

Proof. p P eige(E)(A ) Û O(e (E ),p) , A Û ø e P EO(e, p) , A Û O(e,

p) , A " e P E Û O(e, p) , A ù O(e) " e P E Û p P eige(A ù O(e))

" e P E Û p P ù e P E eige(A ù O(e)).

Definition 28 (distinguishable experiment entity). Suppose that we have
an entity S(%, S , X, 2). We say that two experiments e, f P % are distinguish-

able iff O(e) ù O(f ) 5 0¤. We say that the entity S is a `distinguishable

experiment entity’ iff " e, f P % we have that e and f are distinguishable.

Two experiments f and g are distinguishable if they can be distinguished
from each other by means of their outcomes. Let us explain intuitively in

the spirit of Piron (1976, 1989, 1990) and Aerts (1981, 1982, 1983) why

distinguishable experiments are necessary for the completeness of the set of

testable properties. We will use the concept of test, question, or experimental
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project as introduced in Piron (1976, 1989, 1990) and Aerts (1981, 1982,

1983) without explicitly defining it again. The reader not acquainted with

this concept can better skip this section and go on to just before the next
proposition. There the intuitive reasoning that we will give now is repeated

in the approach being developed in this paper.

Suppose that we consider a test a ( f, A ), consisting of performing the

experiment f and giving the positive answer `yes’ if the outcome is in A, and

a test a (g, B), consisting of performing the experiment g and giving a positive

answer `yes’ if the outcome is in B. To `prove’ the completeness one introduces
in Piron (1976, 1990) and Aerts (1981, 1982, 1983) the concept of `product

test,’ and if a ( f, A ) tests whether the property a (f, A ) is actual and a (g, B)

tests whether the property a (g, B) is actual, then a ( f, A ) ? a (g, B) tests

whether an infimum of the properties a (f, A ) and a (g, B) is actual. It is by

requiring that the set of tests on the entity S contains all the product tests

that the preorder set of testable properties becomes complete, because an
infimum exists for each subset of properties. The product test is defined by

means of the experiment e ({ f, g}), and is given by a (e ({ f, g}), A ø B),

consisting in performing the experiment e ({ f, g}) and giving a positive

answer `yes’ if the outcome is in A ø B. We remark that, although the product

test can always be defined, it only tests whether the two properties a (f, A )
and a (g, B) are actual if f and g are distinguishable experiments. Indeed,

suppose that f and g are not distinguishable; then O(f ) ù O(g) Þ 0¤, which

means that there is at least one outcome x P O(f ) ù O (g). Suppose that A
does not contain this outcome, while B does; then it is possible that the entity

S is in a state p such that e has as possible outcomes the set A ø {x}, which

is a state where a (g, A ) is not actual, and where g has as possible outcomes
B. Then e ({ f, g}) has as possible outcomes A ø B, which means that in this

state p the test a (e ({ f, g}), A ø B) gives with certainty a positive outcome.

This shows that in this case of nondistinguishable experiments, a (e ({ f, g}),

A ø B) does not test the actuality of the infimum of the properties a (f, A )

and a (g, B).

Proposition 16. Suppose that we have an entity S(M (%), M ( S ), M (X ),

2). Suppose that we denote by ^(e(%)) the collection of eigenstate sets of

the experiment e( e ). If all the experiments are distinguishable, then for E ,
% we have

^(e(E )) , ^(e (%)) (85)

Proof. Consider an arbitrary element F P ^(e (E )). Then there exists

A , O(e(E )) such that F 5 eige(E)(A ). Consider A8 5 A ø ( ø e P %,e ¸ EO(e));

then we have eige(%)(A8) 5 eige(E)(A ), which shows that F P ^(e(%)).
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Theorem 18. Suppose that S(M (%), M ( S ), M(X ), 2) is a distinguishable

experiment entity such that e(%) P M (%). We then have

ø
e P M(%)

^(e) 5 ^(e (%)) (86)

Proof. From Proposition 16 we have ^(e) , ^(e (%)) for all e P M(%),
which implies that ø e P M(%) ^(e) , ^(e (%)). Since e (%) P M(%) we have

^(e (%)) , ø e P M(%)^(e).

For such a distinguishable experiment entity we can also prove that the

set of all testable properties is a complete preorder set.

Theorem 19. Suppose that S(M (%), M( S ), M(X ), 2, +, j ) is a distinguish-

able experiment entity such that e (%) P M (%). We then have

ø
e P M(%)

+(e) 5 + (e (%)) (87)

and the set of testable properties ø e P M(%) +(e) is a complete preorder set

with a maximal element I such that k (I ) 5 M ( ( ), and a minimal element 0
such that k (0) 5 0/ .

Theorem 20. Suppose that S(M (%), M ( S ), M(X ), 2, +, j ) is an identified

distinguishable experiment entity such that e(%) P M(%). Then the state

property system ( S , +(e(%)), j e(%)) describes the state property entity

S( S +(e(%)), j e(%)), and +(e(%)) contains all testable properties of the entity.

We mention that all the calculations in the earlier approaches (Piron,

1976, 1989, 1990; Aerts, 1981, 1982, 1983) actually take place in the state
property system ( S , +(e(%)), j e(%)).

8. THE EIGENCLOSURE

We analyze now how for a state experiment outcome entity closure
structures can be introduced in a natural way on the product set % 3 S and

the set of experiments %.

Definition 29 (central eigenmap). Let us consider an entity S(%, S , X,

2). For A , X we introduce

eig: 3(X ) ® 3(% 3 S ), A j eig(A ) (88)

such that

(e, p) P eig(A ) Û O(e, p) , A (89)
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Definition 30 (eigenmaps on the experiments). Let us consider an entity

S(%, S , X, 2). For p P S we define a map eigp that we call the eigenmap

corresponding to the state p:

eigp: 3(O(p)) ® 3(%), A j eigp(A ) (90)

e P eigp(A ) Û O(e, p) , A (91)

Proposition 17. Let us consider an entity S(%, S , X, 2) and the central

eigenmap eig: 3(X ) ® 3(% 3 S ), A j eig(A ); then for Ai , X we have

eig( ù i Ai) 5 ù i eig(Ai) (92)

Proof. (e, p) P eig( ù i Ai) Û O(e, p) , ù i Ai Û O(e, p) , Ai " i Û
(e, p) P eig(Ai) " i Û (e, p) P ù i eig(Ai).

Proposition 18. The map eigp introduced in Definition 30 satisfies the

following properties:

eigp(0/ ) 5 0/ (93)

eigp(O(p)) 5 % (94)

eigp( ù i Ai) 5 ù i eigp(Ai) (95)

Definition 31. Let us consider an entity S(%, S , X, 2) and the eigenmaps

eigp , p P S . We denote the image of an eigenmap eigp by &( p); in other words,

&( p) 5 {G , % | $ A , O(p), G 5 eigp(A )} (96)

Definition 32. Let us consider an entity S(%, S , X, 2) and the central
eigenmap eig. We denote the set of all images of eig by =, hence

= 5 {Y , % 3 S | $ A , X, Y 5 eig(A )} (97)

We have shown that ^(e) is a closure system on S . In an analogous way we
show that = is a closure system on % 3 S and &( p) is a closure system on %.

Theorem 21. Let us consider an entity S(%, S , X, 2); then = and &( p)
are closure systems for every e P %, p P S , respectively, on % 3 S , S , and %.

Proof. We give the proof for =. Suppose that Yi P =. Then $ A i , X
such that Yi 5 eig(A i). We have (e, p) P eig( ù i Ai) Û (e, p) P ù i eig(Ai)

5 ù i Yi.

Definition 33 (generating set). Suppose we have a set Z and ^ is the

set of closed subsets corresponding to a closure operator cl on Z. The collection

@ , ^ is a `generating set’ for ^ iff for each subset F P ^ we have a

family Bi P @ such that F 5 ù i Bi.
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Proposition 19. Suppose we have a set Z equipped with a closure cl
and @ is a generating set for the set of closed subsets ^. Then for an arbitrary

subset K , Z we have

cl(K ) 5 ù
K , B,B P @

B (98)

Proof. We know that cl(K ) 5 ù K , F,F P ^ F. Because @ is a generating

set for ^ we have F 5 ù F , B,B P @ B. Hence cl(K ) 5 ù k , F( ù F , B B) 5
ù K , B,B P @ B.

On the set of states S we have a collection of closure systems ^(e),

e P %. It is easy to show that they generate a global closure system on S .

Theorem 22. Let us consider an entity S(%, S , X, 2) and the set of

eigenmaps {eige | e P %} and corresponding closure systems ^(e). Put ! 5
ø e P % ^(e), and consider

^ 5 { ù i A i | A i P !} (99)

Then ^ is a closure system on S generated by !.

Proof. Consider Fi P ^. Then there exist A ij P ! such that Fi 5
ù j A ij. We now have ù i Fi 5 ù i ù j Aij which shows that ù i Fi P ^.

In an analogous way the set of closure systems &( p) on % generates a

global closure system on %.

Theorem 23. Let us consider an entity S(%, S , X, 2) and the set of eigen-

maps {eigp | p P S } and corresponding closure systems &( p). Put # 5
ø p P S &( p), and consider.

& 5 { ù i Ci | Ci P #} (100)

Then & is a closure system on % generated by #.

Definition 34. Let us consider an entity S(%, S , X, 2); we shall call =,

^, and &, respectively, the central eigen-, the state eigen-, and the experiment

eigenclosure system and denote them from now on ^eig, &eig, and =eig. To

make notations not to heavy, we will denote the closure operator for each of
the closure system by cleig. Hence

cleig: 3(% 3 S ) ® =eig , 3(% 3 S ), Kj cleig(K ) 5 ù
K , Y,Y P =

Y

cleig: 3( S ) ® ^eig , 3( S ), Kj cleig(K ) 5 ù
K , F,F P ^

F

cleig: 3(%) ® &eig , 3(%), Kj cleig(K ) 5 ù
K , G,G P &

G

(101)

We could ask ourselves now what the relation is between the closures =eig,
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^eig, and &eig. Could it be that the state eigenclosure and the experiment

eigenclosure are in some way `traces’ of the central eigenclosure? To see

whether this is the case, let us introduce the following.

Definition 35. Let us consider an entity S(%, S , X, 2) and the central

eigenclosure =eig. For Y P =eig we introduce

Ystate 5 {p P S | " e P %, (e, p) P Y } (102)

We then define

=eig(state) 5 {Ystate | Y P =eig} (103)

Proposition 20. =eig(state) is a closure system on the set of states S .

Proof. Consider % 3 S P =eig; then (% 3 S )state 5 S , which shows

that S P =eig(state). Obviously 0¤ P =eig(state). Consider now Zi P =eig(state),
which means that there exists Yi P =eig such that Zi 5 (Yi)state. Consider

( ù i Yi)state. We have p P ( ù i Yi)state Û " e P %, (e, p) P ù i Yi Û " e P %,

" i, (e, p) P Yi , Û i, p P (Yi)state Û p P ù i (Yi)state.

In the example of Section 14 we show that in general ^eig is not equal

to =eig(state), but we can prove the equality for distinguishable experiment

entities.

Theorem 24. Let us consider a distinguishable experiment entity S(%,

S , X, 2) with central eigenclosure system =eig and state eigenclosure system
^eig. Then we have

^eig 5 =eig (state) (104)

Proof. It is enough to show that each element of the generating set !
of the state eigenclosure system ^eig also belongs to =eig(state). Suppose that

A , O(e) and hence eige(A ) P !. Consider now the set B 5 ø f P e , f Þ e O( f )
ø A. Remark first that O(e, p) , A « O( f, p) , B, " f P %. Let us show

that because S is a distinguishable experiment entity, we also have the inverse

implication. Let us remark that B ù O(g) 5 ø f P e , f Þ e [(O( f ) ù O(g)) ø
(A ù O(g))], which shows that B ù O(e) 5 A. Let us now consider p P
eig(B)state « " f P %, O(f, p) , B « O(e, p) , B ù O(e) 5 A « p P eige(A ).
So eige(A ) 5 (eig(B))state P =(state). For the converse suppose eig(A )state P
=(state), where A , X; then eig(A )state 5 ù e P % eige(A ù O(e)).

To finish this section on the eigenclosures, we show that there is also

a very natural closure structure on the set of outcomes on an entity.

Definition 36. Let us consider on entity S(%, S , X, 2). For A , X we define

cl(A ) 5 ù
O(e,p) , A c

O(e, p)C (105)

Theorem 25. Let us consider an entity S(%, S , X, 2) and the map cl
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introduced in Definition 36. Then cl is a closure on X. All the O(e, p) are

open sets for this closure and

O(e, p) , cl(A )C Û O(e, p) , A C (106)

eig(A ) 5 eig(int(A )) (107)

Proof. Clearly A , cl(A ). If A , B, then cl(A ) , cl(B). We have that
cl (0¤) 5 0¤. We have to show now that cl(cl(A )) , cl(A ). Let us first prove

that O(e, p) , cl(A )C Û O(e, p) , A C because from this there follows

immediately the closure property that we are left to prove. Suppose that

O(e, p) , cl(A )C; then O(e, p) , ø O(f, q) , AC O(f, q) , A C. On the other hand,

suppose that O(e, p) , A C; then cl(A ) , ø O(f, q) , AC O(f, q) , O(e, p)C, which

implies that O(e, p) , cl(A )C. Now we have cl(cl(A )) 5 ù O(e, p) , cl(A)C

O(e, p)C 5 ù O(e, p) , AC O(e, p)C 5 cl(A ).

9. ORTHOGONALITY AND ORTHOCLOSURE

The orthogonality relations give rise to a closure in a natural way.

Proposition 21. Consider a set Z equipped with an orthogonality relation

’ , and define for K , Z the set K ’ 5 {p | p ’ q, q P K }, and

cl(K ) 5 (K ’ ) ’ (108)

Then cl is a closure operator that we shall call the orthoclosure operator

connected to ’ .

Proof. See Birkhoff (1978).

Proposition 22. Let us denote the collection of orthoclosed subsets by

=orth; then it can easily be shown that this closure system is orthocomple-

mented, which means that the map ’ : =orth ® =orth satisfies

K , L « L ’ , K ’ , K ’ ’ 5 K, K ù K ’ 5 0¤ (109)

Proposition 23. The following formulas are satisfied in =orth for Yi

P =orth:

( ù i Yi)
’ 5 cl( ø i Y ’

i )

( ø i Yi)
’ 5 ù

i
Y ’

i (110)

cl(Y ø Y ’ ) 5 Z

Proof. Let Y P =orth: (1) clorth ( ø i Y ’
i ) , Y Û ø i Y ’

i , Y Û Y ’
i ,

Y " i Û Y ’ , Yi " i Û Y ’ , ù i Yi Û ( ù i Yi)
’ , Y. From this it follows

that clorth ( ø i Y ’
i ) 5 ( ù i Yi)

’ . (2) Y , ù i Y ’
i Û Yi , Y ’ " i Û ø i Yi ,
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Y ’ Û clorth ( ø i Yi) , Y ’ Û Y , ( ø i Yi)
’ . From this it follows that

( ø i Yi)
’ 5 ù i Y ’

i . (3) clorth(Y ø Y ’ ) 5 (Y ’ ù Y ) ’ 5 0¤’ 5 Z.

An orthoclosure system has a simple generating set of elements.

Theorem 26. The set @ 5 {{p} ’ | p P Z } is a generating set for the

set of orthoclosure system =orth.

Proof. Consider any element Y P =. We have Y ’ 5 ø p P Y
’ {p}, and

hence Y 5 Y ’ ’ 5 ù p P Y
’ {p} ’ .

Definition 37. Let us consider an entity S(%, S , X, 2). We have defined

orthogonality relations on % 3 S , on S , and on %. We will call the orthoclosure

systems related to these orthogonality relations, the central ortho-, the state
ortho-, and the experiment orthoclosure systems and denote them respectively

by =orth, ^orth, and &orth.

We can prove the following surprising result:

Theorem 27. Let us consider an entity S(%, S , X, 2) and the eigenclosure

systems =eig, ^eig(e), and &eig( p) and the orthoclosure systems =orth, ^orth(e),

and &orth( p). We have

=orth , =eig, ^orth(e) , ^eig(e), &orth( p) , &eig( p) (111)

Proof. Consider Y P =orth and consider A 5 ø (e,p) P Y
’ O(e, p). Since

Y 5 (Y ’ ) ’ , we have ( f, q) P Y Û O(f, q) ù O(e, p) 5 0¤ " (e, p) P Y ’ Û
O(f, q) ù A 5 0¤ Û O( f, q) , A C Û ( f, q) P eig(A C). This shows that

Y P =eig. Consider now F P ^orth(e) and B 5 ø p P F
’ e O(e, p). Since F 5

(F ’ e) ’ e we have q P F Û O(e, q) ù O(e, p) 5 0¤, " p P F ’ e Û O(e, q)
ù B 5 0¤ Û O(e, q) , B C Û q P eige(B

C). This shows that F P ^eig(e).

10. OUTCOME, EXPERIMENT, AND STATE DETERMINATION
AND THE FIRST SEPARATION AXIOM

In this section we will show that the traditional topological separation

axioms are connected to physically well interpretable properties of the consid-

ered entities. Instead of introducing these properties as axioms, we choose

to use them as characterizations of types of entities.

Definition 38. Let us consider an entity S(%, S , X, 2). We say that the

entity is `outcome determined’ iff O(e, p) 5 O( f, q) Þ (e, p) 5 ( f, q).

Definition 39. Consider a set W with a closure operator cl. We say that

cl satisfies the T0 separation axiom iff for w, v P W we have cl(w) 5
cl(v) Þ w 5 v.
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Proposition 24. Let us consider an entity S(%, S , X, 2). Suppose that

cleig is the eigenclosure operator on % 3 S . We have

cleig({(e, p)}) 5 eig(O(e, p)) (112)

Proof. Since {(e, p)} , eig(O(e, p)) we have cleig({(e, p)}) , eig(O(e, p))
because cleig({(e, p)}) is the smallest element of =eig that contains {(e, p)}.

Let us prove now that eig(O(e, p)) , cleig({(e, p)}). Since cleig({(e, p)}) P
=eig there exists a set A , X such that cleig({(e, p)}) 5 eig(A ). From this it

follows that (e, p) P eig(A ), or O(e, p) , A. This implies that eig(O(e, p))

, eig(A ), and hence we have shown that eig(O(e, p)) , cleig({(e, p)}). As

a consequence cleig({(e, p)}) 5 eig(O(e, p)).

Theorem 28. Let us consider an entity S(%, S , X, 2). The entity S is

`outcome determined’ iff the central eigenclosure operator satisfies the T0

separation axiom.

Proof. Suppose that the entity is `outcome determined’ and consider

(e, p), ( f, q) P % 3 S such that cleig({(e, p)}) 5 cleig({( f, q)}). From the
foregoing theorem then it follows that eig(O(e, p)) 5 eig((O( f, q)). This

means that (e, p) P eig(O( f, q)), or O(e, p) , O( f, q) and also ( f, q) P eig
(O(e, p)) and hence O( f, q) , O(e, p). From this it follows that O(e, p) 5
O( f, q) and hence, since the entity is `outcome determined,’ we have (e, p) 5
( f, q). This shows that cleig is T0. Suppose now that the central eigenclosure

operator is T0, and consider (e, p) and ( f, q) such that O(e, p) 5 O( f, q).
Then eig(O(e, p)) 5 eig(O( f, q)) and hence cleig({(e, p)}) 5 cleig({( f, q)}).

From this follows that (e, p) 5 ( f, q), and hence we have shown that the

entity is `outcome determined.’

Let us investigate now the eigenclosure on the set of states. We can

characterize the closure of singletons in the following way:

Proposition 25. Let us consider an entity S(%, S , X, 2). Suppose that
cleig is the state eigenclosure operator on S . We have

cleig({p}) 5 ù
e P %

eige(O(e, p)) (113)

Proof. Since {p} , eige(O(e, p)) " e P % we have {p} , ù e P % eige(O(e,

p)). This shows that cl eig({p}) , ù e P % eige(O(e, p)). Let us now prove the

inverse inclusion. Since cleig({p}) P ^eig there exists for e P %, A (e) ,
O(e) such that cleig({p}) 5 ù e P % eige(A (e)). We have {p} , ù e P % eige(A (e))
and hence p P eige(A (e)) " e P %. But this implies that O(e, p) , A (e) " e
P %, which in turn implies that eige(O(e, p)) , eige(A (e)) " e P %. As a

consequence ù e P % eige (O(e, p)) , ù c¬ % eige A(e)) which shows that ù e P %

eige(O(e, p)) , cleig({p}).
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Definition 40. Let us consider an entity S(%, S , X, 2). We say that the

entity is `state determined’ iff O(e, p) 5 O(e, q) " e P % Þ p 5 q.

Theorem 29. Let us consider an entity S(%, S , X, 2). The entity S is
`state determined’ iff the state eigenclosure operator satisfies the T0 separa-

tion axiom.

Proof. Suppose that the entity is `state determined’ and consider p,

q P S such that cleig({p}) 5 cleig({q}). This means that ù e P % eige(O(e, p))

5 ù e P % eige(O(e, q)). From this it follows that p P eige(O(e, q)) " e P %.
Hence O(e, p) , O(e, q) " e P %. In an analogous way we show that O(e,

q) , O(e, p) " e P %, which proves that O(e, p) 5 O(e, q) " e P %. Since

the entity is state determined we have as a consequence that p 5 q. This

proves that the state eigenclosure operator satisfies the T0 separation axiom.

Suppose now that the state closure operator is T0 and consider p, q P S such

that O(e, p) 5 O(e, q) " e P %. Then ù e P % O(e, p) 5 ù e P % O(e, q), and
hence cleig({p}) 5 cleig({q}). From this it follows that p 5 q and hence we

have shown that the entity is `experiment determined.’

By symmetry we can formulate analogous properties for `experiment-

determined’ entities.

Definition 41. Let us consider an entity S(%, S , X, 2). We say that the
entity is `experiment determined’ iff O(e, p) 5 O( f, p) " p P S Þ e 5 f.

Theorem 30. Let us consider an entity S(%, S , X, 2). The entity S is

`experiment determined’ iff the experiment eigenclosure operator satisfies

the T0 separation axiom.

11. ATOMIC ENTITIES AND THE SECOND SEPARATION
AXIOM

The second topological separation axiom is also connected to a property

that we can easily interpret physically.

Definition 42. Let us consider an entity S(%, S , X, 2). We say that the

entity is `central atomic’ iff (e, p) , ( f, q) Þ (e, p) 5 ( f, q).

Definition 43. Consider a set W with a closure operator cl. We say that

cl satisfies the T1 separation axiom iff for w P W we have cl({w}) 5 {w}.

Proposition 26. Let us consider an entity S(%, S , X, 2). The entity S is
`central atomic’ iff the central eigenclosure operator satisfies the T1 separa-

tion axiom.

Proof. Suppose that the entity is `central atomic’ and consider (e, p) P
% 3 S . Suppose that ( f, q) P cleig({e, p}); then ( f, q) P eig(O(e, p)). This
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means that O( f, q) , O(e, p) and hence ( f, q) , (e, p). But from this it

follows that ( f, q) 5 (e, p). So we have shown that cleig({(e, p)}) contains

no other elements than (e, p) and hence cleig({(e, p)}) 5 {(e, p)}. On the
other hand, suppose now that the central eigenclosure operator is T1, and

consider (e, p) , ( f, q). We then have O(e, p) , O( f, q) and hence eig(O(e,

p)) , eig(O( f, q)), which implies that {(e, p)} 5 cleig({(e, p)}) , cleig({ f,
q)}) 5 {( f, q)}. This proves that (e, p) 5 ( f, q).

Definition 44. Let us consider an entity S(%, S , X, 2). We say that the
entity is `state atomic’ iff p , q Þ p 5 q.

Theorem 31. Let us consider an entity S(%, S , X, 2). The entity S is `state

atomic’ iff the state eigenclosure operator satisfies the T1 separation axiom.

Proof. Suppose that the entity is `state atomic’ and consider p P S .

Suppose that q P cleig({p}); then q P ù e P % eig(O(e, p)), and hence q P
eig(O(e, p)) " e P %. This means that O(e, q) , O(e, p) " e P % and hence

q , p. But from this it follows that q 5 p. So we have shown that cleig({( p)})

contains no other elements than p and hence cleig({p)}) 5 {p}. On the other

hand, suppose now that the state closure operator is T1, and consider p , q.

We then have O(e, p) , O(e, q) " e P % and hence ù e P % eig(O(e, p)) ,
ù e P % eig(O(e, q)), which implies that {p} 5 cleig({p}) , cleig({q}) 5 {q}.
This proves that p 5 q.

Again for reasons of symmetry we have the corresponding theorem for

`experiment atomic’ entities.

Definition 45. Let us consider an entity S(%, S , X, 2). We say that the

entity is `experiment atomic’ iff e , f Þ e 5 f.

Theorem 32. Let us consider an entity S(%, S , X, 2). The entity S is

`experiment atomic’ iff the experiment eigenclosure operator satisfies the T1

separation axiom.

The following is now merely a reformulation of T1 Þ T0:

Theorem 33. Let us consider an entity S(%, S , X, 2). If the entity is
`central atomic,’ then it is `outcome determined.’ If it is `state atomic,’ then

it is `state determined,’ and if it is `experiment atomic,’ it is `experiment

determined.’

12. D-CLASSICAL ENTITIES

We want to study entities with special properties that make them `more

classical.’ Since the word `classical’ is used in so many different meanings

in different approaches, we will choose to introduce new names for these

special properties.
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Definition 46 (d-classical entity). Let us consider an entity S(%, S , X,

2). We say that S is a `d-classical’ entity (`d’ for deterministic) iff " e P %,

p P S we have that O(e, p) is a singleton, which we denote O(e, p) 5 {x (e, p)}.

Theorem 34. Let us consider a d-classical entity S(%, S , X, 2).

1. For p P S and e P %, we have that p is always an eigenstate for the

experiment e with eigenoutcome x (e, p).

2. If p, q P S and e, f P % such that p , q and e , f, then q , p and

f , e, and hence p ’ q and e ’ f.

Proof. Follows immediately from the definitions.

Theorem 35. Let us consider a d-classical entity S(%, S , X, 2). Suppose

that p, q P S and e, f P %; then we have that p ’ q or p ’ q, and e ’ f
or e ’ f.

Proof. Consider p, q P S and suppose that p ÷ q. This means that

p ñ q and q ñ p. Then there exists at least one experiment e P % such that
O(e, p) , ¤ O(e, q). We have O(e, p) 5 {x (e, p)} and O(e, q) 5 {x (e, q)}.

Hence O(e, p) ù O(e, q) 5 0¤, which shows that p ’ q. This shows that

nonequivalent states are orthogonal. In an analogous way we show that

experiments are equivalent or orthogonal for a d-classical entity.

Theorem 36. Let us consider a d-classical entity S(%, S , X, 2). If the

entity is `outcome determined,’ then it is `central atomic.’ If the entity is

`state determined,’ then it is `state atomic,’ and if the entity is `experiment

determined,’ then it is `experiment atomic.’

Proof. Suppose that the entity is outcome determined. Consider (e, p)

, ( f, g); then we have O(e, p) , O( f, q) and hence {x (e, p)} , {x ( f, q)}.

This implies that {x (e, p)} 5 {x ( f, q)} and hence, since the entity is `outcome
determined,’ we have (e, p) 5 ( f, q). So we have proved that the entity is

central atomic. In an analogous way one proves the two other implications.

Let us now study the closures for d-classical entities.

Theorem 37. Let us consider a d-classical entity S(%, S , X, 2). We have

for A , X

eig(A) 5 {(e, p) | x (e, p) P A} 5 x 2 1(A ) (114)

eig(A C) 5 eig(A )C 5 eig(A ) ’ (115)

=eig 5 =orth (116)

Proof. We have (e, p) P eig(A ) Û O(e, p) , A. Since O(e, p) 5
{x (e, p)} we have (e, p) P eig(A ) Û x (e, p) P A. This shows that eig(A )

5 {(e, p) | x (e, p) P A}. Consider now (e, p) P eig(A C); then x (e, p) P
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A C, and hence x (e, p) ¸ A, which implies that (e, p) ¸ eig(A ) or (e, p) P
eig(A )C. This shows that eig(A C) , eig(A )C. Consider now (e, p) P eig(A )C,

which means that (e, p) ¸ eig(A ) and hence x (e, p) ¸ A. Consider now an
arbitrary ( f, q) P eig(A ), i.e., x ( f, q) P A. This means that O(e, p) ù
O( f, q) 5 {x (e, p)} ù {x ( f, q)} 5 0¤. As a consequence (e, p) P eig(A ) ’ .

This shows that eig(A )C , eig(A ) ’ . Consider now (e, p) P eig(A ) ’ . This

means that (e, p) ’ ( f, q) for all ( f, q) P eig(A ). Hence x (e, p) P A C, which

shows that (e, p) P eig(A C). Hence we have shown that eig(A ) ’ , eig(A C).

Let us prove now that =eig 5 =orth. We already have =orth , =eig such that
we only have to prove the inverse inclusion. If we remark that eig(A ) 5
eig(A C) ’ , it follows that eig(A ) P =orth.

Theorem 38. Let us consider a d-classical entity S(%, S , X, 2). We have

for A , O(e)

eige(A ) 5 {p | x (e, p) P A} (117)

eige(A
C) 5 eige(A )C 5 eige(A ) ’ e (118)

^eig(e) 5 ^orth(e) (119)

Theorem 39. Let us consider a d-classical entity S(%, S , X, 2). We have
for A , O( p)

eigp(A ) 5 {e | x (e, p) P A} (120)

eigp(A
C) 5 eigp(A )C 5 eigp(A ) ’ p (121)

&eig( p) 5 &orth( p) (122)

A d-classical entity is a trivial type of probabilistic entity.

Theorem 40. Let us consider a d-classical entity S(%, S , X, 2). It is a

probabilistic entity where the probabilities are defined as follows:

m : % 3 S 3 X ® [0, 1], (e, p, y) j m (e, p, y) (123)

where m (e, p, y) 5 0 if y Þ x (e, p) and m (e, p, x (e, p)) 5 1.

13. SUBENTITIES AND MORPHISMS

The concept of subentity should be clearly defined. When will we decide

that a certain `piece’ of an entity is a subentity? Let us consider two entities

S and S8 with sets of states S and S 8, sets of experiments % and %8, and sets

of outcomes X and X 8. If S is to be a part of S8, it is plausible to demand
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that if the entity S8 is in a certain state p8, then the entity S, as part of S8, is

in a well defined state m ( p8). This defines a function:

m: S 8 ® S p8 j m ( p8) (124)

which is surjectiveÐ each state of the subentity S corresponds to at least one

state of the entity S8Ð but not necessarily injectiveÐ different states of the entity
S8 can give rise to the same state of the subentity S. This function formalizes:

ª If S is a subentity of S8, then the mode of being of S8 determines that of S.º

Second, if S is to be a part of S8, this should imply that to each experiment

e that can be performed on S there corresponds an experiment n (e) that can

be performed on S8. This again defines a function

n: % ® %8, e j n (e) (125)

which is injectiveÐ if experiments are different when they are performed on
the subentity S, they are also different when they are performed on the entity

S8Ð but not necessarily surjectiveÐ there can be experiments that can be

performed on the entity S8 that have no counterpart on the subentity S.

We have to express now that S is really a subentity of S by means of

a requirement on the way experiments act on states and outcomes occur. This

is again a requirement of `covariance’ : reality does not depend on whether
we represent a big piece of it by means of the entity S8 or a smaller subpiece

of it by means of the subentity S. More concretely, we express this requirement

of covariance in the following way: if we perform an experiment e on the

entity S in a state m ( p8), where p8 is a state of S8, then the outcome x (e, m ( p8))
occurs iff one specific outcome x8(n (e), p8) occurs after the performance of

the experiment n (e) on the entity S8 in state p8. This requirement again
defines a function

l: X ® X 8, x j l(x) (126)

that is such that considering a state p8 P S 8 and an experiment e P %, each

outcome x8 P O(n (e), p8) corresponds to an outcome x P O(e, m ( p8)), such

that l(x) 5 x8. The interpretation is that x occurs for e, S being in state m ( p8)
iff l(x) occurs for n (e), S8 being in state p8. Since only one outcome occurs

at once, this implies that the function l is injective, and O(e, m ( p8)) is
surjectively mapped onto O(n (e), p8) by l.

We have now introduced all elements to present a definition:

Definition 47 (subentities). Suppose that S(%, S , X, 2) and S8(%8, S 8,
X 8, 28) are two entities. We say that S is a subentity of S8 iff there exist a

surjective function

m: S 8 ® S , p8 j m ( p8) (127)
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an injective function

n: % ® %8, e j n (e) (128)

and an injective function

l: X ® X 8, x j l(x) (129)

that for each p8 P S 8 and e P % maps O(e, m ( p8)) surjectively on O(n (e),

p8) such that:

(i) If the entity S8 is in state p8, then the entity S is in state m ( p8).
(ii) If the experiment e is performed on the entity S, then the experiment

n (e) is performed on the entity S8.
(iii) Considering a state p8 of S8 and an experiment e P %, then the

outcome x P O(e, m ( p8)) occurs for e being performed on S in state m ( p8)
iff the outcome l(x) occurs for n (e) being performed on S8 in state p8.

Proposition 27. Suppose that S(%, S , X, 2) and S8(%8, S 8, X 8, 28) are

two entities such that S is a subentity of S8, and m, n, and l are the connecting

functions related to S and S8. If x, y P X, e, f P %, and p8, q8 P S 8 we have

x ’ y Þ l(x) ’ l( y) (130)

p8 , q8 Þ m ( p8) , m (q8) (131)

e ’ f Þ n (e) ’ n ( f ) (132)

(e, m ( p8)) , ( f, m (q8)) Û (n (e), p8) , (n ( f ), q8) (133)

(e, m ( p8)) ’ ( f, m (q8)) Û (n (e), p8) ’ (n ( f ), q8) (134)

Proof. Suppose that x ’ y; then there exists e P % and p P S such that
x, y P O(e, p) and x Þ y. Since m is surjective we have a p8 P S 8 such that

p 5 m ( p8). This means that x, y P O(e, m ( p8)) and hence l(x), l( y) P
O(n (e), p8). Since l is injective we have l(x) Þ l( y) and hence l(x) ’ l( y).

Suppose that p8 , q8. This means that for all e8 P %8 we have O8(e8, p8) ,
O8(e8, q8). Consider an arbitrary e P %; then l(O(e, m ( p8))) 5 O8(n (e), p8)
, O8(n (e), q8) 5 l(O(e, m (q8))). Since l is injective this shows that O(e,
m ( p8)) , O(e, m (q8)). This proves that p , q. Suppose that e ’ f; this

means that there exists p P S such that O(e, p) ù O( f, p) 5 0¤. This implies

that l(O(e, p) ù O( f, p)) 5 l(O(e, p)) ù l(O( f, p)) 5 0¤. Consider p8 P S 8
such that m ( p8) 5 p, then O8(n (e), p8) ù O8(n ( f ), p8) 5 l(O(e, m ( p8))) ù
l(O( f, m ( p8))) 5 0¤. This shows that n (e) ’ n ( f ). We have (e, m ( p8)) ,
( f, m (q8)) Û O(e, m ( p8)) , O( f, m (q8)) Û l(O(e, m ( p8))) , l(O( f, m (q8)))
Û O8(n (e), p8) , O8(n ( f ), q8)) Û (n (e), p8) , (n ( f ), q8). We have (e,

m ( p8)) ’ ( f, m (q8)) Û O(e, m ( p8)) ù O( f, m (q8)) 5 0¤ Û l(O(e, m ( p8)))
ù l(O( f, m (q8))) 5 0¤ Û O8(n (e), p8) ù O8(n ( f ), q8)) 5 0¤ Û (n (e), p8) ’
(n ( f ), q8).
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We remark that the function m does not necessarily conserve the

orthogonality relation. It can be that states of S8 that are orthogonal are

mapped onto states of S that are not orthogonal. In the same way, the
function n does not necessarily conserve the preorder relation. It can well

be that experiments that `imply’ each other for the subentity do not

`imply’ each other for the entity. But both functions are `continuous’ for

the eigenclosure system.

Proposition 28. Suppose that S(%, S , X, 2) and S8(%8, S 8, X 8, 28) are

two entities, such that S is a subentity of S8, and m, n, and l are the connecting

functions related to S and S8. For p8 P S 8, e P %, A , X, and A8 , X 8 we have

m 2 1(eige(A )) 5 eign(e)(l(A )) (135)

n 2 1(eig8p8(A8)) 5 eigm(p8)(l
2 1 (A8)) (136)

Proof. We have p8 P m 2 1(eige(A )) Û m ( p8) P eige(A ) Û O(e, m ( p8))
, A Û l(O(e, m ( p8)) , l(A ) Û O(n (e), p8) , l(A ) Û p8 P eign(e)(l(A )).
We also have e P n 2 1(eig8p8(A8)) Û n (e) P eig8p8(A8) Û O8(n (e), p8) ,
A8 Û l(O(e,m ( p8)) , A8 Û O(e,m ( p8)) , l 2 1(A8) Û e P eigm(p8)(l

2 1(A8)).

Theorem 41. Suppose that S(%, S , X, 2) and S8(%8, S 8, X 8, 28) are two
entities, such that S is a subentity of S8, and m, n, and l are the connecting

functions related to S and S8. Then m and n are continuous functions for the

eigenclosure systems, or

F P ^eig Þ m 2 1 (F ) P ^8eig (137)

G8 P &8eig Þ n 2 1(G) P &eig (138)

Proof. Suppose that F P ^eig. Then we have F 5 ù e P %Fe with Fe P
^eig(e). From the foregoing theorem it follows that for each Fe P ^eig(e) we

have m 2 1(Fe) P ^8eig(n (e)) and hence m 2 1(Fe) P ^8eig. We have m 2 1( ù e P %Fe)

5 ù e P %m 2 1(Fe), which shows that m 2 1(F ) P ^8eig. Suppose that G8 P &8eig;
then we have that G8 5 ù p8 P S 8Gp8, where Gp8 P &8eig( p8). Hence we have

n 2 1(Gp8) P &eig(m ( p8)) and hence also n 2 1(Gp8) P &eig. Since we have

n 2 1( ù p8 P S 8 Gp8) 5 ù p8 P S 8 n 2 1(Gp8) we have n 2 1(G) P &eig.

Let us consider the situation of two probabilistic entities S and S8
such that S is a subentity of S8 and let } be the set of generalized

probability measures of S and }8 the set of generalized probability

measures of S8. We will call S a `probabilistic subentity’ of S8 if the
respective generalized probability measures are connected in the way we

will specify now. We recall that the situation that we consider is the

following: if we perform an experiment e on the entity S in a state m ( p8)
where p8 is a state of S8, then the outcome x (e, m ( p8)) occurs iff one
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specific outcome x8(n (e), p8) 5 l(x (e, m ( p8))) occurs after the performance

of the experiment n (e) on the entity S8 in state p8. This means that if

we perform repeated experiments on entities in identical states and calculate
the relative frequencies of outcomes x (e, m ( p8)) and outcomes x8(n (e),

p8), they will be the same. This means that also the limits of these relative

frequencies, i.e., the probabilities, will match.

Suppose that S(%, S , X, 2, }) and S8(%8, S 8, X 8, 28, }8) are two

probabilistic entities. To each m P } corresponds a m 8 P }8 such that m
represents the relative frequency operation on the subentity S and m 8 represents
the corresponding relative frequency operation on the entity S8. And we have

m (e, m ( p8), x) 5 m 8(n (e), p8, l(x)). Let us formalize this physical idea.

Definition 48. Suppose that S(%, S , X, 2, }) and S8(%8, S 8, X 8, 28, }8)
are two probabilistic entities such that S is a subentity of S8. We will say

that S is a probabilistic subentity iff there exists an injective function

k: } ® }8, m j k ( m ) (139)

such that for e P %, p8 P S 8, and x P X we have

m (e, m ( p8), x) 5 k ( m )(n (e), p8, l(x)) (140)

14. A FINITE EXAMPLE

The first example that we discuss is a finite example. Let us consider

an entity S with the following set of states S , set of experiments %, and sets

of outcomes:

S 5 {p, q, r}, % 5 {e, f, g} (141)

O(e,p) 5 {x1, x2}, O(e, q) 5 {x1, x3}, O(e,r) 5 {x2, x3}

O( f, p) 5 {y1, y2}, O( f, q) 5 {x2, y2}, O( f, r) 5 {x3, y1, y2} (142)

O(g, p) 5 {x1, y1}, O(g, q) 5 {x2}, O(g, r) 5 {x1, x2, y1}

Then we have

O(e) 5 {x1, x2, x3}, O( f ) 5 {x2, x3, y1, y2}, O(g) 5 {x1, x2, y1}

O( p) 5 {x1, x2, y1, y2}, O(q) 5 {x1, x2, x3} O(r) 5 {x1, x2, x3, y1, y2}

X 5 {x1, x2, x3, y1, y2}
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14.1. Preorder and Orthogonality

We introduce a shorter notation for the nine elements of % 3 S . Let us

denote (e, p) 5 l 11, (e, q) 5 l 12, (e, r) 5 l 13, ( f, p) 5 l 21, ( f, q) 5 l 22,

( f, r) 5 l 23, (g, p) 5 l 31, (g, q) 5 l 32, and (g, r) 5 l 33. We have

l 11 , l 33 l 21 , l 23 l 32 , l 11 l 32 , l 13 l 32 , l 22

l 32 , l 33 l 11 ’ l 21 l 11 ’ l 23 l 12 ’ l 21 l 12 ’ l 22

l 12 ’ l 32 l 13 ’ l 21 l 13 ’ l 31 l 21 ’ l 11 l 21 ’ l 12

l 21 ’ l 13 l 21 ’ l 32 l 22 ’ l 12 l 22 ’ l 31 l 23 ’ l 11

(144)

l 23 ’ l 32 l 31 ’ l 13 l 31 ’ l 22 l 31 ’ l 32 l 32 ’ l 12

l 32 ’ l 21 l 32 ’ l 23 l 32 ’ l 31

Let us now calculate the preorder and orthogonality relations on the set of

states S and on the set of experiments % for this example. We have

p ñ q q ñ p p ñ r r ñ p q ñ r r ñ q p ’ g q

p ’ ¤ r q ’ ¤ r e ñ f f ñ e e ñ g g ñ e f ñ g (145)

q ñ f e ’ p f e ’ q f e ’ q g f ’ ¤ g

We have q that is an eigenstate of g with eigenoutcome x2, and hence (g, q)

is an eigencouple with eigenoutcome x2.

14.2. The Eigenclosures

Let us now study the closure structures and let us construct the eigenmap
eig and the closure system = for our finite example. We have

eig({x2}) 5 { l 32}, eig({x1, x2}) 5 { l 11, l 32}

eig({x2, x3}) 5 { l 13, l 32}, eig({x1, y1}) 5 { l 31}

eig({x1, x3}) 5 { l 12}, eig({x1, x3, y2}) 5 { l 12}

eig({x2, y1}) 5 { l 32}, eig({x2, y2}) 5 { l 22, l 32}

eig({y1, y2}) 5 { l 21}, eig({x1, x2, x3}) 5 { l 11, l 12, l 13, l 32}

eig({x1, x3, y1}) 5 { l 12, l 31}, eig({x1, x2, y1}) 5 { l 11, l 31, l 32, l 33}

eig({x1, y1, y2}) 5 { l 21, l 31}, eig({x1, x2, y2}) 5 { l 11, l 22, l 32} (146)

eig({x2, y3, y1}) 5 { l 13, l 32}, eig({x2, x3, y2}) 5 { l 13, l 32, l 22}

eig({x3, y1, y2}) 5 { l 21, l 23}, eig({x2, y1, y2}) 5 { l 21, l 22, l 32}
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eig({x1, x3, y1, y2}) 5 { l 12, l 21, l 23, l 31}

eig({x1, x2, x3, y2}) 5 { l 11, l 12, l 13, l 22, l 32}

eig({x2, x3, y1, y2}) 5 { l 13, l 21, l 22, l 23, l 32}

eig({x1, x2, y1, y2}) 5 { l 11, l 21, l 22, l 31, l 32, l 33}

eig({x1, x2, x3, y1}) 5 { l 11, l 12, l 13, l 31, l 32, l 33}

The images of all other subsets of X are 0¤ or % 3 S or already contained

in the ones presented here. Hence, if =eig is the set of eigenclosed subsets,

we have

=eig 5 {0¤, { l 12}, { l 31}, { l 32}, { l 21}, { l 11, l 32}, { l 13, l 32}, { l 21, l 31},

{ l 32, l 22}, { l 22, l 21, l 32}, { l 21, l 23}, { l 11, l 31, l 32, l 33},

{ l 11, l 22, l 32}, { l 12, l 31}, { l 11, l 12, l 13, l 32}, { l 12, l 21, l 23, l 31},

{ l 13, l 32, l 22}, { l 11, l 12, l 13, l 22}, { l 13, l 21, l 22, l 23, l 32},

{ l 11, l 21, l 22, l 31, l 32, l 33}, { l 11, l 12, l 13, l 31, l 32, l 33}} (147)

Let us now construct the closure system on the set of states. We have

eige({x1, x2}) 5 {p}, eige({x1, x3}) 5 {q}, eige({x2, x3}) 5 {r}

(148)

and all the other images of eige are 0¤ or S . This shows that

^(e) 5 {0¤, {p}, {q}, {r}, S } (149)

We also have

eigf ({y1, y2}) 5 {p} eigf ({y2, x2}) 5 {q}
(150)

eigf ({y1, y2, x3}) 5 {p, r}, eigf ({y1, y2, x2}) 5 {p, q}

and the other images that are 0¤ or S . This shows that

^( f ) 5 {0¤, {p}, {q}, {p, q}, {p, r}, S } (151)

And finally we have

eigg({x2}) 5 {q}, eigg({x1, y1}) 5 {p} (152)

which shows that

^(g) 5 {0¤, {p}, {q}, S } (153)
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The state eigenclosure system is given by

^ 5 ! 5 {0¤, {p}, {q}, {r}, {p, q}, {p, r}, S } (154)

Let us now construct the closure system on the set of experiments. We have

eigp({x1, x2}) 5 {e}, eigp({y1, y2}) 5 { f}
(155)

eigp({x1, x2, y1}) 5 {e, g}, eigp({x1, y1, y2}) 5 { f, g}

We have then

&( p) 5 {0¤, {e}, { f}, {g}, {e, g}, { f, g}, %} (156)

For the state q we have

eigq({x1, x3}) 5 {e}, eigq({x2}) 5 {g} (157)

eigq({x2, y2}) 5 { f, g}, eigq({x1, x2, x3}) 5 {e, g}

We have then

&(q) 5 {0¤, {e}, {g}, {e, g}, { f, g}, %} (158)

Finally for r we have

eigr({x2, x3}) 5 {e}, eigr({y1, y2, x3}) 5 { f}

eigr({x1, x2, y1}) 5 {g}, eigr({y1, y2, x2, x3}) 5 {e, f} (159)

eigr({x1, x2, x3, y1}) 5 {e, g}

We have then

&(r) 5 {0¤, {e}, { f}, {g}, {e, g}, {e, f }, %} (160)

This means that

& 5 {0¤, {e}, { f}, {g}, {e, f}, {e, g}, { f, g}, %} 5 3(%) (161)

We can easily see that in general =(state) is different from ^ by considering

our example. Indeed we have

eig({x1, x2, y1, y2})(state) 5 {p} (162)

All the other traces from elements of = are 0¤ or S , which shows that

=(state) 5 {0¤, {p}, S } (163)

This shows that, for example, {q} is not contained in =(state), while it is

contained in ^.
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14.3. The Orthoclosures

Let us construct now the orthoclosure systems =orth, ^orth(e), and ^orth.
To do this, we first construct the generating set of elements consisting of the

orthogonals of singletons. First we construct; =orth.

{ l 11}
’ 5 { l 21, l 23}, { l 12}

’ 5 { l 21, l 22, l 32}

{ l 13}
’ 5 { l 21, l 31}, { l 21}

’ 5 { l 11, l 12, l 13, l 32}

{ l 22}
’ 5 { l 12, l 31}, { l 23}

’ 5 { l 11, l 32} (164)

{ l 31}
’ 5 { l 13, l 22, l 32}, { l 32}

’ 5 { l 12, l 21, l 23, l 31}

{ l 33}
’ 5 0¤,

If we consider this collection as a generating set of elements we find

=orth 5 {0¤, { l 12}, { l 21}, { l 31}, { l 32}, { l 11, l 32}, { l 13, l 32}, { l 22, l 32},

{ l 23, l 21}, { l 21, l 31}, { l 12, l 31}, { l 21, l 22, l 32}, { l 13, l 22, l 32},

{ l 11, l 12, l 13, l 32}, { l 12, l 21, l 23, l 31}, % 3 S } (165)

Let us now construct ^orth(e), ^orth( f ), and ^orth(g). We have

{p} ’ e 5 0¤, {q} ’ e 5 0¤, {r} ’ e 5 0¤ (166)

From this it follows that

^orth(e) 5 {0¤, S } (167)

In an analogous way we have

^orth( f ) 5 {0¤, S } (168)

Let us now construct ^orth(g). We have

{p} ’ g 5 {q}, {q} ’ g 5 {p}, {r} ’ g 5 0¤ (169)

From this it follows that

^orth(g) 5 {0¤, {p}, {q}, S } (170)

It also follows that

^orth 5 {0¤, {p}, {q}, S } (171)
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Again we can see that the trace of the orthoclosure system is not equal to

the state orthoclosure system in general. Indeed we have

=orth(state) 5 {0¤, {p}, S } (172)

The example shows us that the eigenclosures are in general different from
the orthoclosures.

14.4. Special Properties

We can easily check that our entity is `outcome determined.’ Let us

calculate the eigenclosures of the singletons. We have

cleig ({ l 11}) 5 { l 11, l 32} 5 eig(O( l 11))

cleig({ l 12}) 5 { l 12} 5 eig(O( l 12))

cleig({ l 13}) 5 { l 13, l 32} 5 eig(O( l 13))

cleig({ l 21}) 5 { l 21} 5 eig(O( l 21))

cleig({ l 22}) 5 { l 22, l 32} 5 eig(O( l 22)) (173)

cleig({ l 23}) 5 { l 22, l 23} 5 eig(O( l 23))

cleig({ l 31}) 5 { l 31} 5 eig(O( l 31))

cleig({ l 32}) 5 { l 32} 5 eig(O( l 32))

cleig({ l 33}) 5 { l 11, l 31, l 32, l 33} 5 eig(O( l 33))

In this example we can also see that the orthoclosure of the singletons is

not necessarily equal to the eigenclosure, even in the case of an `outcome
determined’ entity. Indeed, for example,

clorth({ l 33}) 5 % 3 S Þ cleig({ l 33}) (174)

15. STANDARD QUANTUM MECHANICS

We describe now the way in which our formalism is related to the

complex Hilbert space model of standard quantum mechanics. We will intro-

duce the concepts of our approach and illustrate what they are for standard

quantum mechanics. We will see that everything works very well except
when we arrive at the description of subentities. There something peculiar

happens, as was remarked early in quantum mechanics, and has been studied

in detail in Aerts and Daubechies (1978) and Aerts (1981, 1982, 1984a). We

will come back to the problem of the description of subentities in the next
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section and a proposal for its solution will lead us to the formulation of an

alternative quantum mechanics in Hilbert space where additional `pure’ states

are introduced in a very natural way. Let us first describe the nonproblematic
aspects of standard quantum mechanics.

For simplicity of notation we consider a finite dimensional complex

Hilbert space, but it is easy to see that an analogous scheme can be formulated

for the case of a separable infinite-dimensional complex Hilbert space. Hence

consider the n-dimensional complex Hilbert space *. Let us first introduce

some concepts of the Hilbert space that we will use in the following.

Definition 49. Consider a separable complex Hilbert space *. We intro-

duce the set of unit vectors, the set of rays, the set of orthogonal projections,

and the set of spectral families of the Hilbert space:

8(*) 5 {c | c P *, |c| 5 1}

5(*) 5 {cÅ | cÅ is the ray of * generated by c P 8(*)} (175)

3(*) 5 {Ek | Ek is an orthogonal projection of *}

6(*) 5 {E | E is a spectral family of *}

We will denote unit vectors by c, d, . . . , rays by cÅ , dÅ , . . . , orthogonal
projections by Ek , El , . . . , and spectral families by E, D, . . . ,

For an entity that is described by this Hilbert space in standard quantum

theory a state pcÅ is represented by a ray cÅ P 5(*) of the Hilbert space (this

will no longer be the case in the alternative completed quantum mechanics

that we present in the next section).
Traditionally it is said that an experiment is described by a self-adjoint

operator. However, if we want to remain closer to the physical meaning, it

is well known that we can better represent the experiment by means of the

spectral family of orthogonal projections of this self-adjoint operator. Let us

first mention the spectral theorem that makes both representations equivalent.

Proposition 29. If H is a self-adjoint operator of an n-dimensional

complex Hilbert space *, then there exist distinct real numbers l 1, . . . , l r

(1 # r # n) and a pairwise orthogonal set of nonzero projections {E1, . . . ,

Er} such that

o
r

k 5 1

Ek 5 1, H 5 o
r

k 5 1

l kEk (176)

which will be called a `spectral family’ of the Hilbert space *. Conversely,

if { l 1, . . . , l r} is a set of distinct real numbers and {E1, . . . , Er} is a pairwise

orthogonal set of nonzero projections, and if the above two conditions are
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satisfied and hence we have a spectral family, then { l 1, . . . , l r} is the set

of distinct eigenvalues of H, and for each k, Ek is the projection onto the

eigenspace corresponding to l k.

That is the reason that we shall represent an experiment by the spectral

family E 5 {E1, . . . , Er} of pairwise orthogonal nonzero projections that
satisfies the first of the two conditions mentioned in the spectral theorem.

We will not use the l i to indicate the outcomes, although we could do so,

but it would show less the underlying structure of the outcomes. Instead we

identify an outcome xEk in the quantum model with the eigenspace Ek of the

Hilbert space (or with the orthogonal projector Ek on this eigenspace; we
will not make a distinction). The set of all outcomes Xsq for the standard

quantum model corresponds to the set of all orthogonal projections or equiva-

lently the set of all closed subspaces of the Hilbert space 3(*), which is a

complete atomic orthocomplemented lattice. For an experiment eE we have

O(eE) 5 {xE1
, . . . , xEr}. Suppose that the entity is in state pcÅ and we consider

an experiment eE; then the set of outcomes O(eE , pcÅ ) is determined in the
following way: for xEj P O(eE) we have xEj P O(eE , pcÅ ) Û Ej (c) Þ 0.

Let us now identify the probabilities as they appear in the case of a

quantum entity described by the standard quantum mechanical formalism. A

quantum entity is a probabilistic entity where the probabilities are defined

as follows. Suppose that we have an experiment eE , a state pcÅ , and an outcome

xEk P O(eE , pcÅ); then m (eE , pcÅ , xEk) 5 ^ c, Ek(c) & , where ^ . , . & is the inproduct
of the Hilbert space, is the probability that the outcome xEk occurs if the

experiment eE is performed, the entity being in state pcÅ . It is interesting to

remark that the quantum probabilities only depend on the state and the

outcome and not on the experiment. This is one of the essential features of

standard quantum mechanics. We have now introduced all the necessary

correspondences to present a formal definition.

Definition 50. Consider a probabilistic entity S(%sq, S sq, Xsq, 2sq, }sq)
and a separable complex Hilbert space *, with set of unit vectors 8(*), a

set of rays 5(*), a set of orthogonal projections 3(*), and a set of spectral

families 6(*). We say that the entity is a `standard quantum entity’ iff we have

%sq 5 {eE | E P 6(*)}

S sq 5 {pcÅ | cÅ P 5(*)}

Xsq 5 {xEk | Ek P 3(*)} (177)

2sq 5 {O(eE , pcÅ) | E P 6(*), cÅ P 5(*)}

}sq 5 { m | m : %sq 3 S sq 3 Xsq ® [0, 1] is a generalized probability}

such that
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O(eE , pcÅ ) 5 {xEk | Ek P 3(*), Ek(c) Þ 0}

m (eE , pcÅ , Ek) 5 ^ c, Ekc & if Ek P E (178)

m (eE , pcÅ , Ek) 5 0 if Ek ¸ E

15.1. Preorder and Orthogonality

Let us investigate the orthogonali ty relation and show that it coincides

with the orthogonality of the Hilbert space.

Proposition 30. Consider a standard quantum entity S(%sq, S sq, Xsq, 2sq,

}sq). If xE1, xE2 P Xsq then

xE1 ’ xE2 Û E1 ’ E2 (179)

Proof. Suppose that xE1 ’ xE2; then there exists eE P %sq and pcÅ P S sq

such that xE1 Þ xE2 P O(eE , pcÅ). By definition of eE it follows that E1, E2 P
E and hence E1 ’ E2. If, on the other hand, E1 ’ E2, it is always possible

to consider a spectral family E such that E1, E2 P E. Further, we can choose
easily a vector c such that E1(c) Þ 0 and E2(c) Þ 0. Then we have that

xE1, xE2 P O (eE , pcÅ), which proves that xE1 ’ xE2.

It is important to show that the orthogonality relation on the set of states

coincides with the original orthogonali ty relation in the Hilbert space.

Proposition 31. Consider a standard quantum entity S(%sq, S sq, -sq, 2sq,
}sq). For pcÅ , pdÅ P S sq, we have

pcÅ ’ pdÅ Û c ’ d (180)

Proof. Suppose that pcÅ ’ pdÅ ; then there exists an experiment eE , with

E 5 {E1, . . . , Er}, such that O(eE , pcÅ) ù O(eE , pdÅ ) 5 0¤. This means that

we have two subsets K , {1, . . . , r} and L , {1, . . . , r} such that

K ù L 5 0¤ and O(eE , pcÅ ) 5 {xEi | i P K }, while O(eE , pdÅ ) 5 {xEi | i P L}.

We have Ei (c) Þ 0 for i P K and E i (d ) Þ 0 for i P L. This implies that

Ei (c) 5 0 for i ¸ K and Ei (d ) 5 0 for i ¸ L, which shows that ( i ¸ K E i (c)
5 0 and ( i ¸ L E i (d ) 5 0. And since Ei , i P {1, . . . , r}, is a spectral family

we have ( i P K Ei (c) 5 c and ( i P L E i (d ) 5 d, which shows that c ’ d. The

other implication is straightforward.

Proposition 32. Consider a standard quantum entity S(%sq, S sq, Xsq, 2sq,

}sq). For pcÅ , pdÅ P S sq we have

pcÅ , pdÅ Û cÅ 5 dÅ Û pcÅ 5 pd (181)

Proof. Suppose that cÅ Þ dÅ . We do not have to consider the situation

where cÅ ’ dÅ since then certainly pcÅ ñ pdÅ . Hence suppose that cÅ ’ ¤ dÅ . Let us
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construct an experiment by means of a set of spectral projections {E1, . . . ,

Er} where Ek is a one-dimensional projector that is orthogonal to dÅ , but not

orthogonal to cÅ . This is always possible if the Hilbert space has dimension
$ 2. For this experiment eE we have that O(eE , pcÅ ) contains the outcome

xEk, while O(eE , pdÅ ) does not contain it. This shows that pcÅ ñ pdÅ . If the

Hilbert space has dimension 1, the proposition is trivially satisfied.

Theorem 42. A standard quantum entity S(%sq, S sq, Xsq, 2sq, }sq) is
state atomic.

Proposition 33. Consider a standard quantum entity S(%sq, S sq, Xsq, 2sq,

}sq). For eE , eF P %sq we have

eE 5 eF or eE ’ eF (182)

Proof. For a Hilbert space of dimension 1 the proposition is trivially

satisfied. Hence consider a Hilbert space of at least dimension 2. Consider
two experiments eE Þ eF. This situation is of the following nature. We have

E 5 {E1, . . . , Es , Es 1 1, . . . , Er} and F 5 {E1, . . . , Es , Fs 1 1, . . . , Fi}, where

s is the number of spectral projections that are equal; hence Fi Þ Ej. Let us

take now a vector c P ( ( s
i 5 1 Ei)

’ , which is always possible since eE Þ eF ,

i.e., E Þ F. We then have O(eE , pcÅ) ù O(eF , pcÅ) 5 0¤, which proves that

eE ’ eF.

For the orthogonality and preorder relation on % 3 S different situations

are possible.

Proposition 34. Consider a standard quantum entity S(%sq, S sq, Xsq, 2sq,

}sq). For (eE , pcÅ ), (eE , pdÅ ) P %sq 3 S sq we have

(eE , pcÅ) , (eE , pdÅ ) Û R (c) 5 c (183)

where

R 5 o
xEk P O(eE ,pdÅ )

Ek (184)

Proof. We have R(c) 5 c Û Ek(c) 5 0 for xEk ¸ O(eE , pdÅ ) Û
O(eE , pcÅ ) , O (eE , pdÅ ) Û (eE , pcÅ ) , (eE , pdÅ ).

Proposition 35. Consider a standard quantum entity S(%sq, S sq, Xsq, 2sq,

}sq). For (eE , pcÅ ), (eF , pdÅ ) P %sq 3 S sq we have

(eE , pcÅ) , (eF ,pdÅ ) Û R (c) 5 c and T (c) 5 c (185)
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where

R 5 o
xEk P O(eE pdÅ )

Ek , T 5 o
Ek P E ù F

Ek (186)

Proposition 36. Consider a standard quantum entity S(%sq, S sq, Xsq, 2sq,

}sq). For (eE , pcÅ ), (eF , pdÅ ) P %sq 3 S sq we have

(eE , pcÅ) ’ (eF , pdÅ ) Û T (c) 5 c or T (d ) 5 d (187)

where

T 5 o
Ek ¸ E ù F

Ek (188)

The concept of eigenstates coincides with the traditional one.

15.2. The Eigenclosures

Let us construct the eigenclosures for the standard Hilbert space model.

We can prove the following proposition:

Proposition 37. Consider a standard quantum entity S(%sq, S sq, Xsq, 2sq,

}sq). For an experiment eE with E 5 {E1, . . . , Er} and A , O(eE), we have

pcÅ P eigeE(A ) Û c P R (A )(*) (189)

where

R (A ) 5 o
xEk P A

Ek (190)

Proof. pcÅ P eigeE(A ) Û O(eE , pcÅ ) , A Û Ek(c) 5 0 for xEk ¸ A Û
R (A )(c) 5 c Û c P R (A )(*).

This proposition shows that the eigeE(A ) corresponds to the orthogonal

projections or closed subspaces of the Hilbert space.

Proposition 38. Consider a standard quantum entity S(%sq, S sq, Xsq, 2sq,

}sq). For an arbitrary R, orthogonal projection of *, and the spectral set

E 5 {R, 1 2 R} we have

c P R (*) Û pcÅ P eigeE({R}) (191)

Proof. c P R (*) Û R (c) 5 c Û (1 2 R)(c) 5 0 Û O(eE , pcÅ) 5 {R} Û
pcÅ P eigeE({R}).

From these propositions it follows that the state eigenclosure system

for the standard quantum mechanical model is isomorphic with the closure

structure of the Hilbert space.
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15.3. The Orthoclosures

Let us investigate the orthoclosure system of standard quantum mechan-

ics and prove that the state orthoclosure system coincides completely with

the state eigenclosure system.

Theorem 43. Consider a standard quantum entity S(%sq, S sq, Xsq, 2sq,

}sq). For K , S sq and L 5 {c | pcÅ P K } we have

K ’ 5 {pcÅ | c P L ’ } (192)

clorth(K ) 5 {pcÅ | c P cl(L)} (193)

where cl is the closure operator in the Hilbert space. Suppose that L is a

closed subspace of *, and F 5 {p c | c P L}; then we have F P ^orth. For
the standard quantum mechanical mechanical model we have

^eig 5 ^orth (194)

Proof. We have K ’ 5 {p c ) p c ’ p d, p d P K} 5 {pcÅ | c ’ d,d P L} 5
{pcÅ | c P L ’ }. From this it follows that clorth(K ) 5 (K ’ ) ’ 5 {pcÅ | c P (L ’ ) ’ }

5 {pcÅ | c P cl(L)}. Consider now L to be a closed subspace of the Hilbert
space and F 5 {pcÅ | c P L}. Then clorth(F ) 5 {pcÅ | c P cl(L)} 5 {pcÅ | c P L}

5 F, which shows that F P Forth.

So for the standard quantum mechanical formalism the eigenclosure

system and the orthoclosure system coincide. As a consequence the eigen-

closure system is orthocomplemented.

16. COMPLETED QUANTUM MECHANICS: A POSSIBLE
SOLUTION OF THE SUBENTITY PROBLEM

For standard quantum mechanics a subentity is described by means of

the tensor product procedure of the Hilbert spaces. Let us explain briefly

how this procedure works. Let S and S8 be described in complex Hilbert
spaces * and *8 such that *8 5 * ^ &, where & is another complex Hilbert

space. In this situation `standard quantum mechanics says that’ the entity S8
consists of two subentities, one described by the Hilbert space * (this is S)

and one described by the Hilbert space & (let us call this entity T ). We have

studied this situation in detail in earlier work (Aerts and Daubechies, 1978;
Aerts, 1984a), and will here only show how this scheme fits (and does not

fitÐ and this will be the reason to `change’ standard quantum mechanics and

formulate a new `completed’ quantum mechanics within Hilbert space) into

the general description of a subentity that we have developed in this new

approach.
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Let us consider the entity S(%sq, S sq, Xsq, 2sq, }sq) described in the

Hilbert space * and the entity S8(%8sq, S 8sq, X 8sq, 28sq, }8sq) described in the

Hilbert space *8 and suppose that S is a subentity of S8. Let us identify the
connection functions m, n, l, and k. Let us first do this for the functions n
and l, because we will see that we will hit upon a strange situation for the

functions m and k. We have

n: %sq ® %8sq, eE j e 8E8 5 n (eE) (195)

E 8 5 {E1 ^ I&, E2 ^ I&, . . . , Ek ^ I&} (196)

l: Xsq ® X 8sq, xEk j x 8E8k8 5 l (xEk) (197)

E 8k8 5 Ek ^ l& (198)

These two functions show that for the standard tensor product procedure of

standard quantum mechanics we can make correspond with each experiment

eE on the subentity S a unique experiment e 8E8 on the big entity S8, and also

with each outcome xEk of the subentity S there corresponds a unique outcome

x 8E8k8 of the big entity S8.
The requirement that to each state p 8cÅ 8, of the big entity S8 there corres-

ponds a unique state of the subentity S is not satisfied in this tensor product

procedure within standard quantum mechanics. It is only met for some of

the states of the big entity S8, namely for the product states. Indeed if we

consider a state p 8cÅ 8, where c8 5 c ^ d, the function m can be defined as

follows: m ( p 8cÅ 8) 5 pcÅ . But for a general state of S8, and especially a nonproduct
state, i.e., p 8cÅ 8, where c8 5 ( i ci ^ di , this cannot be done.

Let us consider the natural correspondence between the probabilities of

the subentity and the big entity, which defines the function k, and see that

also here we have a correspondence only in the case that the big entity is in

a product state. Consider a probability measure m for the subentity, the big
entity being in a product state pcÅ 8 with c8 5 c ^ d. Hence we have

m (eE , m ( p 8cÅ 8), Ek) 5 ^ c, Ekc & . The corresponding probability measure m 8 for

the big entity should be such that m 8(n (eE), pcÅ 8, l(xEk)) 5 m (eE , m ( p 8cÅ 8), Ek).

If we put m 8(n (eE), pcÅ 8, l(xEk)) 5 ^ cÅ 8, (Ek ^ l&)cÅ 8 & , then this is satisfied. Indeed

we have ^ cÅ 8, (Ek ^ l&)cÅ 8 & 5 ^ c ^ d, (Ek ^ l&)c ^ d & 5 ^ c, Ekc & ^ d, l&d & 5
^ c, Ekc & ^ d, d & 5 ^ c, Ekc & . So we can define m 8 5 k ( m ).

Our analysis means that the tensor product procedure of standard quan-

tum mechanics cannot be used to describe subentities of the new approach.

In Aerts (1984b) we show that some of the traditional axioms that lead to
standard quantum mechanics are at the origin of this problem. More specifi-

cally these are the axioms of orthocomplementation, the covering law, and

the axiom of atomicity (Aerts, 1984b). The problem of the description of

compound entities and quantum axiomatics (which includes the problem of
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the description of subentities) has also been identified in other axiomatic

approaches (Randall and Foulis, 1981; Pulmannova, 1983, 1984, 1985; Aerts

and Valckenborgh, 1999) and possibilities to replace the failing axioms are
under investigation (Aerts and Van Steirteghem, 1999).

16.1. The Subentity Problem in Standard Quantum Mechanics

We now consider a completely new possibility to solve this problem.

If the `solution’ that we propose here is correct, this will automatically lead
to the formulation of a new `completed’ quantum mechanics in Hilbert space.

Let us explain how we came to this possible solution.

The main problem is that if the big entity is in a nonproduct state

represented by a ray of the tensor product Hilbert space * ^ &, the subentities

are not in a state represented by a ray of one of the Hilbert spaces * or &.

This seems to indicate that the subentities `are not in a state’ even if the big
entity `is in a state.’ This is of course very difficult to imagine. Indeed, if a

piece of reality (the big entity) is in a certain state, then also a `piece’ of

this `piece’ of reality (in this case the subentities) should be in a state. It is

hard to conceive of a reality that would not satisfy such an elementary and

fundamental property. Let us indicate the deep conceptual problem that we
have just stated `the subentity problem of standard quantum mechanics.’

Whereas this problem was known from the early days of quantum

mechanics, it was concealed more or less by the confusion that often exists

between pure states and mixtures. Let us explain this first. The reality of a

quantum entity in standard quantum mechanics is represented by a pure state,

namely a ray of the corresponding Hilbert space. So what we have called
`states’ in this article are often called `pure states.’ Mixed states (what we

also have called mixed states in this articleÐ see Section 4) are represented

in standard quantum mechanics by density matrices (positive self-adjoint

operators with trace equal to 1). But although a mixed state is also called a

state, it does not represent the reality of the entity under consideration, but

a lack of knowledge about this reality. This means that if the entity is in a
mixed state, it is actually in a pure state, and the mixed state just describes

the lack of knowledge that we have about the pure state it is in. We have

remarked that the deep conceptual problem that we indicate here was noticed

already in the early days of quantum mechanics, but disguised by the existence

of the two types of states, pure states and mixed states. Indeed in most books

on quantum mechanics it is mentioned that for the description of subentities
by means of the tensor product procedure the big entity can be in a pure

state (and a nonproduct state is meant here) such that the subentities will be

in mixed states and not in pure states (see, for example, Jauch, 1968, Section

11-8, and Cohen-Tannoudj i, 1973, p. 306). The fact that the subentities,
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although not in a pure state, are at least in a mixed state seems at first sight

to be some kind of a solution to the `subentity problem in standard quantum

mechanics’ . A little further reflection, however, shows that it is not: indeed,

if a subentity is in a mixed state, it should anyhow be in a pure state, and

this mixed state should just describe our lack of knowledge about this pure

state. So the `subentity problem of standard quantum mechanics’ is not solved

at all. Probably because quantum mechanics is anyhow entailed with many

paradoxes and mysteries, the deep problem of the subentity description was

unconsciously just added to the list by the majority of physicists.

Way back in 1984 we already showed that in a more general approach

we can define pure states for the subentities, but they will not be `atoms’ of

the lattice of properties (Aerts, 1984b). Now it can easily be shown that

within the general lattice approach (very similar to the approach that we have

exposed in this paper in Section 6) standard quantum mechanics gives rise

to an atomic property lattice, the rays of the Hilbert space representing the

atoms of the lattice (see also Theorem 42 of this paper, which proves the

`state atomicity’ ). This means that the nonatomic pure states that we had

identified in Aerts (1984b) cannot been represented within the standard quan-

tum mechanical formalism. We must admit that the finding of the existence

of nonatomic pure states in the 1984 paper, even from the point of view of

generalized quantum formalisms, seemed also to us very far-reaching and

difficult to interpret physically. Indeed intuitively it seems that only atomic

states should represent pure states. We know now that this is a wrong intuition.

But to explain why, we have to present first the other pieces of the puzzle.

A second piece of the puzzle appeared when in 1991 we built a model

of a mechanistic classical laboratory situation violating the Bell inequalities

with ! 2, exactly `in the same way’ as it is violated by the EPR experiments

(Aerts, 1991). With this model we tried to show that the Bell inequalities

can be violated in the macroscopic world with the same numerical value as

the quantum violation. What is interesting for the problem of the description

of subentities is that new `pure’ states were introduced in this model. We

will see in a moment that the possibility of existence of these new states

leads to a solution of the problem of the description of subentities within a

Hilbert space setting, but different from standard quantum mechanics.

More pieces of the puzzle appeared steadily during the elaboration of

the general formalism presented in the present paper. We started to work on

this formalism during the first half of the 1980s, reformulating and elaborating

some of the concepts over the years. Then it became clear that the new states

introduced in Aerts (1991), although `pure’ states in the model, appear as

nonatomic states in the general formalism. This made us understand that the

first intuition that classified nonatomic states as not good candidates for
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pure states was a wrong intuition. Let us present now the total scheme of

our solution.

16.2. The Quantum Machine: A Macroscopic Spin Model

We have introduced this example on earlier occasions (Aerts, 1986,

1991, 1995; Aerts and Durt, 1994) and will use it here to illustrate the solution

of the subentity problem of standard quantum mechanics that we want to
present and we will show how all the pieces of the puzzle fit together. The

quantum machine is in fact a model for the spin of a spin-1/2 quantum entity.

Let us present it in some detail such that this section is self-contained.

The entity Sqm that we consider is a point particle P that can move on

the surface of a sphere denoted by surf with center 0 (the origin of a three-

dimensional real space) and radius 1. The unit vector v giving the location
of the particle on the surface of the sphere represents the state pv of the

particle (see Fig. 1a) when it is at the surface of the sphere. Hence the

collection of all possible states of the entity Sqm that we consider is given by

S qm 5 {pv | v P surf} (199)

We define the following experiments. For each point u P surf, we

introduce the experiment eu. We consider the diametrically opposite point

2 u, and install an elastic band of length 2 such that it is fixed with one of

Fig. 1. A representation of the quantum machine. (a) The physical entity P is in state pv at

the point v, and an elastic corresponding to the experiment eu is installed between the two

diametrically opposed points u and 2 u. (b) The particle P falls orthogonally onto the elastic

and sticks to it. (c) The elastic breaks and the particle P is pulled toward the point u, such that

(d) it arrives at the point u, and the experiment eu gets the outcome ou
1.
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its endpoints in u and the other endpoint in 2 u. Once the elastic is installed,

the particle P falls from its original place v orthogonally onto the elastic and

sticks on it (Fig. 1b). Then the elastic breaks and the particle P, attached to
one of the two pieces of the elastic (Fig. 1c), moves to one of the two

endpoints u or 2 u (Fig. 1d). Depending on whether the particle P arrives at

u (as in Fig. 1) or at 2 u, we give the outcome o u
1 or o u

2 to eu. Hence for the

quantum machine we have

%qm 5 {eu | u P surf } (200)

If we consider the two unit vectors v, u P surf, we can have the following

possibilities. (1) If we have v 5 u, then O(eu , pv) 5 {o u
1}; (2) if we have

v 5 2 u, then O(eu , pv) 5 {o u
2}; (3) if we have v Þ u and v Þ 2 u, then

O(eu , pv) 5 {o u
1, o u

2}. This shows that

Xqm 5 {o u
1, o u

2 | u P surf } (201)

The probabilities are easily calculated. The probability m (eu , pv , o u
1) that the

particle P ends up at point u and hence experiment eu gives outcome o u
1 is

given by the length of the piece of elastic L1 divided by the total length of the

elastic. The probability m (eu , pv , o u
2) that the particle P ends up at point 2 u

and hence experiment eu gives outcome o u
2 is given by the length of the piece

of elastic L2 divided by the total length of the elastic. This gives (Fig. 2)

m (eu , pv , o u
1) 5

L1

2
5

1

2
(1 1 cos u ) 5 cos2 u

2
(202)

m (eu , pv , o u
2) 5

L2

2
5

1

2
(1 2 cos u ) 5 sin2 u

2
(203)

These are exactly the standard quantum mechanical probabilities connected

to the spin of a spin-1/2 quantum particle described in a two-dimensional

complex Hilbert space.

Fig. 2. A representation of the experimental process in the plane

where it takes place. An elastic of length 2, corresponding to the

experiment eu , is installed between u and 2 u. The probability m (eu ,

pv , ou
1) that the particle P ends up at point u under the influence of

the experiment eu is given by the length of the piece of elastic L1

divided by the total length of the elastic. The probability m (eu , pv ,

o u
2), that the particle P ends up at point 2 u is given by the length

of the piece of elastic L2 divided by the total length of the elastic.
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Let us present briefly also the quantum description. The state pv is

represented by p cv , where

c v 5 1 cos
u
2

e
i f
2 , sin

u
2

e
2 i f

2 2 (204)

and the experiment eu is represented by eE
u, where E u 5 {E u

1, E u
2} is the

spectral family with spectral projections

E u
1 5 1 1 0

0 0 2 , E u
2 5 1 0 0

0 1 2 (205)

We remark that we have chosen the basis of the two-dimensional complex

Hilbert space that describes our spin to coincide with the eigenvectors of eu ,
hence c u 5 (1, 0) and c 2 u 5 (0, 1), but this does not endanger the generality

of our description. Let us verify that the quantum mechanical calculation

recovers the probabilities of our model. Indeed we have

m q(eE u, pcÅ v, o1) 5 ^ c v, E u
2 c v & 5 cos2 u

2
5 m (eu , pv , o u

1) (206)

m q(eE
u, pcÅ

v, o2) 5 ^ c v, E u
2 c v & 5 sin2 u

2
5 m (eu , pv , o u

2)

This completes our model for the spin of a spin-1/2 quantum entity in standard
quantum mechanics.

16.3. The New State Space: The Completed Quantum Machine

In the example that we proposed in Aerts (1991) we used two spin

models like the one presented here and introduced new states on both models

with the aim of presenting a situation that violates the Bell inequalities exactly

as in the case of the singlet spin state of two coupled spin-1/2 particles. We

indeed introduced a state for both spin models that corresponds to the point
at the center of each sphere, and connecting these two states by a rigid rod,

we could generate a violation of Bell’ s inequalities. Let us now introduce

this state corresponding to the center 0 of the sphere explicitly and call it p0.

We clearly see that if we apply one of the experiments eu to the point now

in the state p0, hence located at the center of the sphere, the probability
corresponding to the respective outcomes is 1/2, and hence the set of possible

outcomes is {o u
1, o u

2} for any u. So we have

m (eu , p0, o u
1) 5 1/2, m (eu , p0, o u

2) 5 1/2 " u P surf (207)

O(eu , p0) 5 {o u
1, o u

2} " u P surf (208)
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If we consider the general definition of the `state implication’ introduced in

Definition 2, then we can see that

pv , p0, p0 ñ pv , " v P surf (209)

which shows that p0 is `not an atom’ of the preordered set of states. This

means that we have `identified’ a possible `nonmixture’ state (meaning by

`nonmixture’ that it really represents the reality of the entity and not a lack

of knowledge about this reality) that is not an atom of the preordered set of

states. Is this a candidate for the `nonmixed’ states that we identified in Aerts
(1984b) and that were nonatoms? We will see that it is. Let us explicitly

define all the new states that we want to introduce in our example. Since it

will no longer be the same example, we will call this new quantum machine

the `completed’ quantum machine.

The entity Scqm (completed quantum machine) that we consider is again

a point particle P that can move inside and on the surface of a sphere denoted
by ball 5 {w | |w| # 1} with center 0 (the origin of a three-dimensional real

space) and radius 1. The vector w giving the location of the particle inside

the sphere represents the state pw of the particle (see Fig. 3). The experiments

that we consider for this completed quantum machine are the same as the

one we considered for the quantum machine. This means that the set of
outcomes and the set of experiments are given by

S cqm 5 {pw | w P ball}, %cqm 5 {eu | u P surf} (210)

Before we calculate the probabilities for the completed quantum entity we

remark the following. Because the sphere is a convex set, each vector w P
ball can be written as a convex linear combination of two vectors v and 2 v
on the surface of the sphere (see Fig. 3). More concretely this means that
we can write (referring to the w, v, and 2 v in Fig. 3)

w 5 a ? v 2 b ? v, a, b # 1, a 1 b 5 1 (211)

Hence, if we introduce these convex combination coefficients a, b we have

w 5 (a 2 b) ? v. Let us calculate now the transition probabilities for a

completed quantum machine entity being in a general state pw with w P ball

Fig. 3. A representation of the experimental process in the case of

the `completed’ quantum machine. An elastic of length 2, correspond-

ing to the experiment eu , is installed between u and 2 u. The probabil-

ity m (eu , pw , o u
1) that the particle P ends up at point u under influence

of the experiment eu is given by the length of the piece of elastic L1

divided by the total length of the elastic. The probability m (eu , pw ,

o u
2) that the particle P ends up at point 2 u is given by the length of

the piece of elastic l 2 2 divided by the total length of the elastic.



350 Aerts

and hence |w| # 1 (see Fig. 3). Again the probability m (eu , pw , o u
1) that the

particle P ends up at point u and hence experiment eu gives outcome o u
1 is

given by the length of the piece of elastic L1 divided by the total length of
the elastic. The probability that 2 u and hence experiment eu gives outcome

o u
2 is given by the length of the piece of elastic L2 divided by the total length

of the elastic. This means that we have

m (eu , pw , o u
1) 5

L1

2
5

1

2
(1 1 (a 2 b) cos u ) 5 a cos2 u

2
1 b sin2 u

2
(212)

m (eu , pw , o u
2) 5

L2

2
5

1

2
(1 2 (a 2 b) cos u ) 5 a sin2 u

2
1 b cos2 u

2
(213)

These are new probabilities that will never be obtained if we limit the set of

states to the rays of the two-dimensional complex Hilbert space as is the

case for the (noncompleted) quantum machine. The question is now the

following: can we find another mathematical entity, connected in some way

or another to the Hilbert space, that would allow us, with a new quantum

rule for calculating probabilities, to find these probabilities? The answer is
yes, but now we have to proceed very carefully not to get into too much

confusion. We will show that these new `pure’ states of the interior of the

sphere can be represented by using density matrices, the same matrices that

are used within the standard quantum formalism to represent mixed states.

And the standard quantum mechanical formula that is used to calculate the

probabilities connected to mixed states, represented by density matrices, can
also be used to calculate the probabilities that we have identified here. But

of course the meaning will be different: in our case this standard formula

will represent a transition probability from one pure state to another and not

the probability connected to the change of a mixed state. Let us show all

this explicitly and to do this construct the density matrices in question.

The well-known quantum formula for the calculation of the probabilities
for an outcome xEk if an experiment eE is performed, where E 5 {E1, . . . ,

Ek , . . . , En}, is the spectral decomposition corresponding to the experiment,

and where the quantum entity is in a mixed state p represented by the density

matrix W, is the following:

m (eE , p, Ek) 5 tr(W ? Ek) (214)

where tr is the trace of the matrix.

A standard quantum mechanical calculation shows that the density matrix

representing the ray state

cv 5 1 cos
u
2

e i f /2, sin
u
2

e 2 i f /2 2
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[see (204)] is given by

W (v) 5 1 cos2 u
2

sin
u
2

cos
u
2

e 2 i f

sin
u
2

cos
u
2

e i f sin2 u
2 2 (215)

and the density matrix representing the diametrically opposed ray state c 2 v

is given by

W ( 2 v) 5 1 sin2 u
2

2 sin
u
2

cos
u
2

e 2 i f

2 sin
u
2

cos
u
2

e i f cos2 u
2 2 (216)

We will show now that the convex linear combination of these two density

matrices with convex weights a and b represents the state pw if we use

the standard quantum mechanical formula [formula (214)] to calculate the

transition probabilities. If, for w 5 av 1 b ( 2 v), we put

W (w) 5 aW(v) 1 bW( 2 v) (217)

we have

W (w) 5 1 a cos2 u
2

1 b sin2 u
2

(a 2 b) sin
u
2

cos
u
2
e 2 i f

(a 2 b) sin
u
2

cos
u
2

e i f a sin2 u
2

1 b cos2 u
2 2 (218)

and it is easy to calculate now the transition probabilities using formula (214).

We have

W (w) ? E1 5 1 a cos2 u
2

1 b sin2 u
2

0

(a 2 b) sin
u
2

cos
u
2

e i f 0 2 (219)

and hence, comparing with formula (212), we find

tr(W (w) ? E1) 5 a cos2 u
2

1 b sin2 u
2

5 m (eu , pw , ou
1) (220)
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In an analogous way we find that

tr(W (w) ? E2) 5 a sin2 u
2

1 b cos2 u
2

5 m (eu , pw , ou
2) (221)

So we have shown that we can represent each one of the new states pw by

the density matrix W (w) if we use formula (214) for the calculation of the

transition probabilities.
Let us also prove that each density operator represents one of the new

states pw. We can show this easily by using the general properties of density

matrices. Since a density operator is a self-adjoint operator, we can find an

orthonormal base of the two-dimensional Hilbert space where it is diagonal.

Since it is a positive operator with trace equal to 1 it will have two real

numbers a, b such that 0 # a # 1 and 0 # b # 1 and a 1 b 5 1 on its
diagonal. Suppose that v and 2 v are the diametrically opposed points of the

sphere representing the base vectors. Then the density operator represents

the state corresponding to the point (a 2 b)v.
Although we have done all the calculations here only explicitly for the

case of a two-dimensional complex Hilbert space representing the spin of a

spin-1/2 quantum entity, it can be shown easily that this procedure is generally
valid for an arbitrary quantum entity with an arbitrary dimensional Hilbert

space. The new nonproduct (hence pure) states that we need to introduce to

solve the `subentity problem’ of standard quantum mechanics can be repre-

sented in a similar way by density operators. We show in much more detail

the new aspect of this new approach to Hilbert space quantum mechanics in
a forthcoming paper (Aerts, 1999).

We have not yet properly defined for the general case what is a density

operator. Let us do this now such that we can prove that the step that we

want to propose, namely interpreting the density operators as `also’ represent-

ing `pure’ states within a new `completed’ Hilbert space formalism, solves

our original `subentity problem.’

16.4. Completed Quantum Mechanics

A density operator W in the case of a general complex Hilbert space *
is a positive self-adjoint operator with trace equal to 1. Only if W 2 5 W
does it represent a projection operator on a ray of the Hilbert space and hence

a `ray state.’ If W 2 Þ W, the density operator represents one of the new states

that is not a ray state, but is still a pure state. The same density operator of
course also still represents a mixed state as in the standard quantum mechanics.

We remark that even in the standard quantum mechanics several distinct

mixed states are represented by the same density operator, such that the

`double’ representation that we introduce for this mathematical object does
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not lead to additional conceptual problems. We just have to be aware of

for which type of state we use the specific representation of a specific

density operator.
To resolve the confusion with the different types of states and their

representations we will now introduce some new concepts.

Definition 51. Consider a separable complex Hilbert space *. We intro-

duce the set of density operators 0(*). A density operator is a positive self-

adjoint operator with trace equal to 1. We will denote density operators by
W, V, . . . .

The set of all density operators 0(*) is a convex set, the subspace of
the vector space of all bounded operators. This means that if we consider a

set (Wi)i of density operators and a set (ai)i of real numbers such that ( i ai

5 1, then ( i ai Wi is also a density operator. It can be shown that for W P
0(*) we have W 2 5 W iff W is an orthogonal projection on a one-dimensional

subspace of *. The density operators that equal their product are the extremal

points of the convex set 0(*) and they represent the `ray’ states. This also
means that every density operator can be written as the convex sum of such

ray state density operators. We now have all the necessary material to present

a formal definition of a completed quantum entity.

Definition 52. Consider a probabilistic entity S(%cq, S cq, Xcq, 2cq, }cq)

and a separable complex Hilbert space *, with a set of density operators

0(*), a set of orthogonal projections 3(*), and a set of spectral families

6(*). We say that the entity is a `completed quantum entity’ iff we have

%cq 5 {eE | E P 6(*)}

S cq 5 {pw | W P 0(*)}

Xcq 5 {xEk | Ek P 3(*)} (222)

2cq 5 {O(eE , pw) | E P 6(*), W P 0(*)}

}cq 5 { m | m : %cq 3 S cq 3 Xcq ® [0, 1] is a generalized probability}

such that

O(eE , pW) 5 {xEk | Ek P 3(*), Ek P E, tr(WEk) Þ 0}

m (eE , pw , Ek) 5 tr(WEk) if E k P E (223)

m (eE , pw , Ek) 5 0 if E k ¸ E

For a completed quantum entity we can solve the problem of the description

of the subentity. Let us consider again the situation of a completed quantum
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entity S(%cq, S cq, Xcq, 2cq, }cq), described in a Hilbert space * that is a

subentity of a completed quantum entity S8(%8cq, S 8cq, X 8cq, 28cq, }8cq) described

in a Hilbert space *8.

The functions n and l are defined as in the case of standard quantum
mechanics, namely

n: %cq ® %cq eE j e 8E8 5 n (eE) (224)

E 8 5 {E1 ^ I&, E2 ^ I&, . . . , Ek ^ I&} (225)

l: Xcq ® X 8cq, xEk
j x 8E8k8 5 l (xEk) (226)

E 8k8 5 Ek ^ I& (227)

Let us now consider a state p 8W8, of the big entity S8. Let us show that there

is one unique state m( p 8W8) 5 pW of the entity S such that tr(W 8 E 8k 8) 5
tr(W Ek) and hence m (eE , m ( p 8W8), Ek) 5 k ( m )(n (eE), p 8W8, i (Ek)).

Proposition 39. Let us suppose that we have three Hilbert spaces *, &,
and *8 such that *8 5 * ^ &. For a density operator W 8 P 08(*8)
there exists a unique density operator W P 0(*) such that for an arbitrary

E k P 3(*) we have tr(W 8Ek ^ I&) 5 tr(W Ek). We will denote W 5 mÃ(W 8).

Proof. We first prove that W is unique if it exists. Suppose that we
would have two density operators W, V P 0(*) such that tr(W 8 Ek ^ I&) 5
tr(W Ek) 5 tr(V Ek) " Ek P 3(*). If we consider especially the projection

operator EcÅ on an arbitrary ray cÅ of the Hilbert space *, then we have tr(W
EcÅ) 5 ^ c, Wc & 5 ^ c, Vc & 5 tr(V EcÅ ). This shows that ^ c, Wc & 5 ^ c, Vc &
" c P * and as a consequence W 5 V.

Suppose that W is a solution for an arbitrary W 8. We know that W 8 can
be written as the convex sum ( c8a (c8)Wc8 of density operators W 8c8 correspond-

ing to projections on the rays cÅ 8, and hence with ( c8a (c8) 5 1. Due to the

linearity of the trace we have tr(W 8Ek ^ I&) 5 ( c8 a (c8) tr(W 8c8Ek), which

shows that if we construct the density operator W for the case where

W 8 5 W 8c8 is a density operator corresponding to a ray cÅ 8; we have a solution

for the general situation.
This means that we have only to construct a solution for the case of a

density operator W 8c8 corresponding to a ray cÅ 8 of the big entity S8. Let us

first show that W has trace equal to 1. Suppose that we consider an orthonormal

base (ci)i of * and an orthonormal base (dj)j of &; then (ci ^ dj)ij is an
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orthonormal base of *8. This means that we can write c8 5 ( ij aijci ^ dj.

We have:

1 5 ^ c8, c8 & 5 o
ijkl

aijakl ^ ci ^ dj , ck ^ dl &

5 o
ijkl

aija *kl ^ ci , ck & ^ dj , dl & (228)

5 o
ijkl

aija *kl d ikd jl 5 o
ij

|a| 2
ij

Let us now use the correspondence of the probabilities as required by the

subentity relation. We have tr(W Ek) 5 tr(W 8Ek ^ I&) for all Ek P 3(*).
Take especially Ek to be the projector on cm , and let us denote this projector

by Em. Then we have

^ cm , W cm & 5 tr(W Em) 5 tr(W 8Em ^ I&) 5 ^ c8, Em ^ I&c8 &

5 ^ o
ij

aijc i ^ dj , Em ^ I& o
kl

akl ck ^ dl &

5 ^ o
ij

aijc i ^ dj , o
kl

akl(Emck) ^ dl & (229)

5 ^ o
ij

aijc i ^ dj , o
l

amlcm ^ dl &

5 o
ijl

aija *ml d im d jl

5 o
j

|amj|
2

This shows that

tr(W ) 5 o
m

^ cm , W cm & 5 o
mj

|amj|
2 5 1 (230)

We can easily calculate, using (229), the matrix elements of W in a base

where W is diagonal (this always exists since W is a self-adjoint operator).

The result of proposition 39 makes it possible for us to define unambigu-

ously the functions m and k. Indeed;

m: S 8cq ® S cq, pW8
j pW 5 m ( pW8) (231)

W 5 mÃ(W 8) (232)

k: }cq ® }8cq, m j k ( m ) (233)

tr(W Ek) 5 tr(mÃ(W 8)Ek) 5 m (eE , m ( pW8), xEk)

5 k ( m )(n (eE), pW8, l(xEk)) 5 tr(W 8Ek ^ I&) for Ek P E (234)
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17. CONCLUSION

We announced in the Introduction that we would elaborate as essential
components of a general operational and realistic formalism the structures of

the states, the experiments, the outcomes, the probabilities, and the symmetries.

We have treated the structures of the states, experiments, and outcomes in some

detail and point out now the aspects that are still missing and will be presented in

forthcoming work. If we think of Piron’ s representation theorem (Piron, 1976),

which is formulated within the category of state property systems (Aerts, et al.,
1999), it takes (1) completeness, (2) atomicity, (3) orthocomplementation, (4)

weak modularity, and (5) the covering law to arrive at a structure that is isomor-

phic with a generalized Hilbert space. For an updated version of the axioms

necessary for this representation theorem, also incorporating the resent result

of SoleÁ r, we refer to Aerts and Van Steirteghem (1999). We have treated the

completenessand the atomicity in the formalism presented here. We have shown
that the completeness of the whole set of properties can only be derived for

the case of distinguishable experiment entities and we have proven that the

atomicity is equivalent to the T1 separation property for the eigenclosure struc-

ture. We have introduced the orthoclosure structure and this closure structure

gives rise in a natural way to an orthocomplementation. This is the reason that

it is possible to introduce the orthocomplementation by postulating that the
eigenclosure structure has to coincide with the orthoclosure structure, as pro-

posed in Aerts (1994). We have not made this step in this article because we

want to study the problem of the introduction of an orthocomplementation in a

more detailed way in forthcoming work. We mention that because we made the

choice to treat the states and the properties of an entity as independent concepts,
which was not the case in the earlier approaches, we identified a new axiom,

which we have called `state determination’ (see also Aerts, 1994). We have not

touched on weak modularity and the covering law: this will be done in future

work. We have also only briefly introduced the concept of probability and left

the elaboration of it for future investigation. We have not spoken at all of the

symmetries and want to mention briefly how we will analyze this aspect. Con-
sidering the group of automorphisms of our basic mathematical structure, we

want to introduce the symmetries asgroup representations of the different physi-

cal groups that are connected to the different symmetries.
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